These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16559398)

  • 1. STUDIES ON OXIDATION-REDUCTION IN MILK I. OXIDATION-REDUCTION POTENTIALS AND THE MECHANISM OF REDUCTION.
    Thornton HR; Hastings EG
    J Bacteriol; 1929 Nov; 18(5):293-318. PubMed ID: 16559398
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase.
    Cammack R; Barber MJ; Bray RC
    Biochem J; 1976 Aug; 157(2):469-78. PubMed ID: 183752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation-reduction potentials of molybdenum, flavin, and iron-sulfur centers in milk xanthine oxidase: variation with pH.
    Barber MJ; Siegel LM
    Biochemistry; 1982 Mar; 21(7):1638-47. PubMed ID: 6896281
    [No Abstract]   [Full Text] [Related]  

  • 4. The influence of oxidation on proteolysis in raw milk.
    Wiking L; Nielsen JH
    J Dairy Res; 2004 May; 71(2):196-200. PubMed ID: 15190948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-electron oxidation and reduction potentials of nitroxide antioxidants: a theoretical study.
    Hodgson JL; Namazian M; Bottle SE; Coote ML
    J Phys Chem A; 2007 Dec; 111(51):13595-605. PubMed ID: 18052257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of ascorbate in raw milk induced by enzymes and transition metals.
    Nielsen JH; Hald G; Kjeldsen L; Andersen HJ; Østdal H
    J Agric Food Chem; 2001 Jun; 49(6):2998-3003. PubMed ID: 11410000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the stoichiometry of electron uptake and the midpoint reduction potentials of milk xanthine oxidase at 25 degrees C by microcoulometry.
    Spence JT; Barber MJ; Siegel LM
    Biochemistry; 1982 Mar; 21(7):1656-61. PubMed ID: 6282314
    [No Abstract]   [Full Text] [Related]  

  • 8. Standard reduction potentials of all couples of the peroxidase cycle of lactoperoxidase.
    Furtmüller PG; Arnhold J; Jantschko W; Zederbauer M; Jakopitsch C; Obinger C
    J Inorg Biochem; 2005 May; 99(5):1220-9. PubMed ID: 15833345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wine Reduction Potentials: Are These Measured Values Really Reduction Potentials?
    Danilewicz JC; Tunbridge P; Kilmartin PA
    J Agric Food Chem; 2019 Apr; 67(15):4145-4153. PubMed ID: 30950610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage.
    Mahmoodani F; Perera CO; Abernethy G; Fedrizzi B; Chen H
    Food Chem; 2018 Sep; 261():149-156. PubMed ID: 29739575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of protein oxidation products in the proteome of thermally processed milk.
    Meyer B; Baum F; Vollmer G; Pischetsrieder M
    J Agric Food Chem; 2012 Jul; 60(29):7306-11. PubMed ID: 22746820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil.
    Qiu X; Jacobsen C; Sørensen AM
    Food Chem; 2018 Oct; 263():119-126. PubMed ID: 29784296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipolysis and Oxidation in Ultra-High Temperature Milk Depend on Sampling Month, Storage Duration, and Temperature.
    Lu J; Langton M; Sampels S; Pickova J
    J Food Sci; 2019 May; 84(5):1045-1053. PubMed ID: 31012969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [ON AN IMPROVEMENT OF THE HILL AND THIEL METHOD FOR DETERMINING THE DEGREE OF OXIDATION OF MILK FATS].
    MONNIN J; SCHETTY O
    Mitt Geb Lebensmittelunters Hyg; 1964; 55():182-6. PubMed ID: 14218321
    [No Abstract]   [Full Text] [Related]  

  • 15. Quantitation of Methionine Sulfoxide in Milk and Milk-Based Beverages-Minimizing Artificial Oxidation by Anaerobic Enzymatic Hydrolysis.
    Kölpin M; Hellwig M
    J Agric Food Chem; 2019 Aug; 67(32):8967-8976. PubMed ID: 31334650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox potentials of milk xanthine dehydrogenase. Room temperature measurement of the FAD and 2Fe/2S center potentials.
    Hunt J; Massey V; Dunham WR; Sands RH
    J Biol Chem; 1993 Sep; 268(25):18685-91. PubMed ID: 8395516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational prediction of one-electron reduction potentials and acid dissociation constants for guanine oxidation intermediates and products.
    Psciuk BT; Schlegel HB
    J Phys Chem B; 2013 Aug; 117(32):9518-31. PubMed ID: 23875631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stability of iron fortified goat and cow milk and their peptide isolates.
    Smialowska A; Matia-Merino L; Carr AJ
    Food Chem; 2017 Dec; 237():1021-1024. PubMed ID: 28763945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does vitamin fortification affect light oxidation in fluid skim milk?
    Schiano AN; Jo Y; Barbano DM; Drake MA
    J Dairy Sci; 2019 Jun; 102(6):4877-4890. PubMed ID: 30904314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in oxidation-reduction potential during milk fermentation by wild lactic acid bacteria.
    Morandi S; Silvetti T; Tamburini A; Brasca M
    J Dairy Res; 2016 Aug; 83(3):387-94. PubMed ID: 27600976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.