These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 16560181)
1. Bacterial Oxidation-Reduction Studies: III. Characteristic Potentials of Cultures of Aerobacillus Species. Gillespie RW; Porter JR J Bacteriol; 1938 Dec; 36(6):633-7. PubMed ID: 16560181 [No Abstract] [Full Text] [Related]
2. Fermentations by Streptothricin-resistant Cultures of Aerobacillus polymyxa. Perlman D J Bacteriol; 1944 Jul; 48(1):116-7. PubMed ID: 16560813 [No Abstract] [Full Text] [Related]
3. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria. Johnson DB; Hedrich S; Pakostova E Front Microbiol; 2017; 8():211. PubMed ID: 28239375 [TBL] [Abstract][Full Text] [Related]
4. Production and properties of 2,3-butanediol; the effect of aerobic conditions on the Aerobacillus fermentation. ROSE D Can J Res; 1947 Sep; 25(5):273-9. PubMed ID: 20265523 [No Abstract] [Full Text] [Related]
5. [Observation and comparison on microstructure of immobilized Aerobacillus fusiformis under wastewater treatment]. Zhang Y; Zhang Y; Shi H; Wang J; Qian Y Huan Jing Ke Xue; 2003 May; 24(3):70-3. PubMed ID: 12916206 [TBL] [Abstract][Full Text] [Related]
6. [Continuous recording of physico-chemical data in bacterial cultures. II. Influence of dissolved oxygen on the measurement of oxidation-reduction potentials in bacterial cultures]. Jacob HE; Horn G Z Allg Mikrobiol; 1965; 5(1):33-41. PubMed ID: 4961479 [No Abstract] [Full Text] [Related]
7. Production and properties of 2,3-butanediol; fermentation of wheat by Aerobacillus polymyxa under aerobic and anaerobic conditions. ADAMS GA Can J Res; 1946 Jan; 24():1-11. PubMed ID: 21066059 [No Abstract] [Full Text] [Related]
8. Production and properties of 2,3-butanediol; pH control in Aerobacillus polymyxa fermentations and its effects on products and their recovery. ADAMS GA; LESLIE JD Can J Res; 1946 Jan; 24():12-28. PubMed ID: 21066060 [No Abstract] [Full Text] [Related]
9. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Zehnder AJ; Wuhrmann K Science; 1976 Dec; 194(4270):1165-6. PubMed ID: 793008 [TBL] [Abstract][Full Text] [Related]
10. Production and properties of 2,3-butanediol; the occurrence of acetone as a product of the Aerobacillus polymyxa fermentation. ROSE D Can J Res; 1946 Sep; 24(Sect F 5):320-6. PubMed ID: 20998417 [No Abstract] [Full Text] [Related]
11. Production and properties of 2,3-butanediol; the effect of various nutrient materials on the fermentation of starch by Aerobacillus polymyxa. FRATKIN SB; ADAMS GA Can J Res; 1946 Jan; 24():29-38. PubMed ID: 21017906 [No Abstract] [Full Text] [Related]
12. Characterization of Nitrate-Dependent As(III)-Oxidizing Communities in Arsenic-Contaminated Soil and Investigation of Their Metabolic Potentials by the Combination of DNA-Stable Isotope Probing and Metagenomics. Zhang M; Li Z; Häggblom MM; Young L; He Z; Li F; Xu R; Sun X; Sun W Environ Sci Technol; 2020 Jun; 54(12):7366-7377. PubMed ID: 32436703 [TBL] [Abstract][Full Text] [Related]
13. Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism. Soldatova AV; Tao L; Romano CA; Stich TA; Casey WH; Britt RD; Tebo BM; Spiro TG J Am Chem Soc; 2017 Aug; 139(33):11369-11380. PubMed ID: 28712284 [TBL] [Abstract][Full Text] [Related]
14. "Bridging hydroxide effect" on mu-carboxylato coordination and electrochemical potentials of bimetallic centers: Mn2(II,II) and Mn2(III,III) complexes as functional models of dimanganese catalases. Boelrijk AE; Khangulov SV; Dismukes GC Inorg Chem; 2000 Jul; 39(14):3009-19. PubMed ID: 11196895 [TBL] [Abstract][Full Text] [Related]
15. Metal site cooperativity within cytochrome oxidase. Goodman G J Biol Chem; 1984 Dec; 259(24):15094-9. PubMed ID: 6096358 [TBL] [Abstract][Full Text] [Related]
16. Oxidation-reduction processes in cultures of bacteria. III. The Pasteur effect with Bact. lactis aerogenes. BASKETT AC; HINSHELWOOD C Proc R Soc Lond B Biol Sci; 1951 Feb; 138(890):88-97. PubMed ID: 14827869 [No Abstract] [Full Text] [Related]
17. Physiological and proteomic analyses of Fe(III)-reducing co-cultures of Desulfotomaculum reducens MI-1 and Geobacter sulfurreducens PCA. Otwell AE; Callister SJ; Sherwood RW; Zhang S; Goldman AR; Smith RD; Richardson RE Geobiology; 2018 Sep; 16(5):522-539. PubMed ID: 29905980 [TBL] [Abstract][Full Text] [Related]
18. One-electron oxidation and reduction potentials of nitroxide antioxidants: a theoretical study. Hodgson JL; Namazian M; Bottle SE; Coote ML J Phys Chem A; 2007 Dec; 111(51):13595-605. PubMed ID: 18052257 [TBL] [Abstract][Full Text] [Related]
19. Computational prediction of one-electron reduction potentials and acid dissociation constants for guanine oxidation intermediates and products. Psciuk BT; Schlegel HB J Phys Chem B; 2013 Aug; 117(32):9518-31. PubMed ID: 23875631 [TBL] [Abstract][Full Text] [Related]
20. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park. Fortney NW; He S; Converse BJ; Beard BL; Johnson CM; Boyd ES; Roden EE Geobiology; 2016 May; 14(3):255-75. PubMed ID: 26750514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]