These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16561592)

  • 1. Characteristics of Tartrate-fermenting Species of Clostridium.
    Tabachnick J; Vaughn RH
    J Bacteriol; 1948 Oct; 56(4):435-43. PubMed ID: 16561592
    [No Abstract]   [Full Text] [Related]  

  • 2. The characteristics of some thermophilic, tartrate-fermenting anaerobes.
    MERCER WA; VAUGHN RH
    J Bacteriol; 1951 Jul; 62(1):27-37. PubMed ID: 14861156
    [No Abstract]   [Full Text] [Related]  

  • 3. The characteristics of lactate-fermenting sporeforming anaerobes from silage.
    BRYANT MP; BURKEY LA
    J Bacteriol; 1956 Jan; 71(1):43-6. PubMed ID: 13286228
    [No Abstract]   [Full Text] [Related]  

  • 4. [Capacity of Clostridium felsineum and Plectridium pectinovorum, the agents responsible for flax wetting, of fermenting pectin in various concentrations of various nitrogen compounds].
    ALEKSEEV VA
    Mikrobiologiia; 1956; 25(3):327-30. PubMed ID: 13369179
    [No Abstract]   [Full Text] [Related]  

  • 5. Fermentation of xylose into acetic acid by Clostridium thermoaceticum.
    Balasubramanian N; Kim JS; Lee YY
    Appl Biochem Biotechnol; 2001; 91-93():367-76. PubMed ID: 11963866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive growth experiments with related pairs of tartrate-fermenting and tartrate-non-fermenting strains of Salmonella typhimurium: relevance to biotyping studies.
    Old DC; Barker RM; Alfredsson GA
    Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1983 Feb; 253(4):515-22. PubMed ID: 6344514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A maltose-fermenting variant of Clostridium hemolyticum.
    CLAUS KD; MATSUOKA T; SMITH LD
    J Bacteriol; 1956 Dec; 72(6):809-12. PubMed ID: 13398368
    [No Abstract]   [Full Text] [Related]  

  • 8. SUCROSE-FERMENTING STRAINS OF CLOSTRIDIUM SEPTICUM.
    WIJEWANTA EA
    Nature; 1963 Jul; 199():300-1. PubMed ID: 14076707
    [No Abstract]   [Full Text] [Related]  

  • 9. Redox controls metabolic robustness in the gas-fermenting acetogen
    Mahamkali V; Valgepea K; de Souza Pinto Lemgruber R; Plan M; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):13168-13175. PubMed ID: 32471945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioproduction of butanol from biomass: from genes to bioreactors.
    Ezeji TC; Qureshi N; Blaschek HP
    Curr Opin Biotechnol; 2007 Jun; 18(3):220-7. PubMed ID: 17462877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium.
    STADTMAN TC; WHITE FH
    J Bacteriol; 1954 Jun; 67(6):651-7. PubMed ID: 13174491
    [No Abstract]   [Full Text] [Related]  

  • 12. On the taxonomy and fine structure of some hyperthermophilic saccharolytic Clostridia.
    Hollaus F; Sleytr U
    Arch Mikrobiol; 1972; 86(2):129-46. PubMed ID: 5081116
    [No Abstract]   [Full Text] [Related]  

  • 13. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum.
    Li L; Ai H; Zhang S; Li S; Liang Z; Wu ZQ; Yang ST; Wang JF
    Bioresour Technol; 2013 Sep; 143():397-404. PubMed ID: 23819976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864.
    Ni Y; Xia Z; Wang Y; Sun Z
    Bioresour Technol; 2013 Feb; 129():680-5. PubMed ID: 23298765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive degradation of pyrimidines. I. The isolation and characterization of a uracil fermenting bacterium, Clostridium uracilicum nov. spec.
    CAMPBELL LL
    J Bacteriol; 1957 Feb; 73(2):220-4. PubMed ID: 13416173
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on the enzymic reduction of amino acids: a proline reductase of an amino acid-fermenting Clostridium, strain HF.
    STADTMAN TC
    Biochem J; 1956 Apr; 62(4):614-21. PubMed ID: 13315223
    [No Abstract]   [Full Text] [Related]  

  • 17. Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae.
    Shin HS; Zeikus JG; Jain MK
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):476-81. PubMed ID: 11954794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens.
    Valgepea K; de Souza Pinto Lemgruber R; Meaghan K; Palfreyman RW; Abdalla T; Heijstra BD; Behrendorff JB; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    Cell Syst; 2017 May; 4(5):505-515.e5. PubMed ID: 28527885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous saccharification and fermentation of dilute alkaline-pretreated corn stover for enhanced butanol production by Clostridium saccharobutylicum DSM 13864.
    Dong JJ; Ding JC; Zhang Y; Ma L; Xu GC; Han RZ; Ni Y
    FEMS Microbiol Lett; 2016 Feb; 363(4):. PubMed ID: 26764423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of d-tartrate-fermenting and -nonfermenting Salmonella enterica subsp. enterica isolates by genotypic and phenotypic methods.
    Malorny B; Bunge C; Helmuth R
    J Clin Microbiol; 2003 Sep; 41(9):4292-7. PubMed ID: 12958259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.