These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16562023)

  • 1. Correlation of Carbohydrate Catabolism and Synthesis of Macromolecules During Enzyme Synthesis in Pseudomonas fluorescens.
    Kirkland JJ; Durham NN
    J Bacteriol; 1965 Jul; 90(1):23-8. PubMed ID: 16562023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Protocatechuate Oxygenase by Pseudomonas fluorescens in the Presence of Exogenous Carbon Sources.
    Kirkland JJ; Durham NN
    J Bacteriol; 1965 Jul; 90(1):15-22. PubMed ID: 16562011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OXIDATIVE ASSIMILATION OF GLUCOSE BY PSEUDOMONAS AERUGINOSA.
    Duncan MG; Campbell JJ
    J Bacteriol; 1962 Oct; 84(4):784-92. PubMed ID: 16561965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MICROBIAL GROWTH ON C1 COMPOUNDS. SYNTHESIS OF CELL CONSTITUENTS BY METHANE- AND METHANOL-GROWN PSEUDOMONAS METHANICA.
    JOHNSON PA; QUAYLE JR
    Biochem J; 1965 Jun; 95(3):859-67. PubMed ID: 14342526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PATTERNS OF OXIDATIVE ASSIMILATION IN STRAINS OF PSEUDOMONAS AND ACHROMOBACTER.
    TOMLINSON GA; CAMPBELL JJ
    J Bacteriol; 1963 Sep; 86(3):434-44. PubMed ID: 14066419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of T1 antigen in Salmonella: biosynthesis in a cell-free system.
    Nikaido H; Sarvas M
    J Bacteriol; 1971 Mar; 105(3):1073-82. PubMed ID: 4994031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS.
    GOSS WA; DEITZ WH; COOK TM
    J Bacteriol; 1965 Apr; 89(4):1068-74. PubMed ID: 14276097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CHARACTERISTICS AND INTERMEDIATES OF SHORT-TERM C-14-O-2 INCORPORATION DURING RIBOSE OXIDATION BY HYDROGENOMONAS FACILIS.
    MCFADDEN BA; HOMANN HR
    J Bacteriol; 1965 Mar; 89(3):839-47. PubMed ID: 14273670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis.
    Baumann P; Baumann L
    Arch Microbiol; 1975 Nov; 105(3):225-40. PubMed ID: 127561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential incorporation of 13C label from dietary glucose into neutral sugars of rat intestine macromolecules.
    Rambal C; Pachiaudi C; Normand S; Riou JP; Louisot P; Martin A
    Ann Nutr Metab; 1995; 39(3):143-51. PubMed ID: 7486840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy requirement for L-glutamate uptake and utilization by Hansenula subpelliculosa cells.
    Shieh KZ; Hedrick LR
    J Bacteriol; 1966 Dec; 92(6):1638-44. PubMed ID: 5958104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE INCORPORATION OF LABELLED AMINO SUGARS BY BACILLUS SUBTILIS.
    BATES CJ; PASTERNAK CA
    Biochem J; 1965 Jul; 96(1):155-8. PubMed ID: 14343124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative assimilation and distribution of glucose in Bacillus cereus.
    CLIFTON CE
    J Bacteriol; 1962 Jan; 83(1):66-9. PubMed ID: 13879953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of the change of metabolite fluxes along the pentose phosphate and glycolytic pathways in Tetrahymena in response to carbohydrates.
    Borowitz MJ; Stein RB; Blum JJ
    J Biol Chem; 1977 Mar; 252(5):1589-605. PubMed ID: 402368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytological Distribution of the Products of Oxidative Assimilation in Pseudomonas aeruginosa.
    Tomlinson GA; Campbell JJ
    J Bacteriol; 1965 Sep; 90(3):599-603. PubMed ID: 16562054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DISTRIBUTION OF GRISEOFULVIN TAKEN UP BY MICROSPORUM GYPSEUM: COMPLEXES OF THE ANTIBIOTIC WITH CELL CONSTITUENTS.
    EL-NAKEEB MA; LAMPEN JO
    J Bacteriol; 1965 Apr; 89(4):1075-81. PubMed ID: 14276098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-free amino acid-incorporating system from Pseudomonas indigofera.
    Shiio T; McFadden BA
    J Bacteriol; 1965 Oct; 90(4):978-83. PubMed ID: 5847810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridine nucleotide synthesis by rat adipose tissue in vitro.
    Hanson RW; Ziporin ZZ
    J Lipid Res; 1967 Jan; 8(1):30-7. PubMed ID: 14564702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive relationship between protocatechuic acid and p-aminosalicylic acid for a cellular transport mechanism.
    HUBBARD JS; DURHAM NN
    J Bacteriol; 1961 Sep; 82(3):361-9. PubMed ID: 13716426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose-C14 metabolism of dormant and activated ascospores of Neurospora.
    Budd K; Sussman AS; Eilers FI
    J Bacteriol; 1966 Feb; 91(2):551-61. PubMed ID: 5883091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.