These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 1656210)

  • 1. Contractile and calcium regulating capacities of myocardia of different sized mammals scale with resting heart rate.
    Hamilton N; Ianuzzo CD
    Mol Cell Biochem; 1991 Aug; 106(2):133-41. PubMed ID: 1656210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of verapamil on some subcellular defects in diabetic cardiomyopathy.
    Afzal N; Pierce GN; Elimban V; Beamish RE; Dhalla NS
    Am J Physiol; 1989 Apr; 256(4 Pt 1):E453-8. PubMed ID: 2523196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory adaptation of the heart to chronic rate overload: increase in calcium transport ATPase activity of myocardial sarcoplasmic reticulum.
    O'Brien PJ; Ling E; Williams HM; Brotherton S; Salerno T; Lumsden JH; Ianuzzo CD
    Can J Cardiol; 1988; 4(5):243-50. PubMed ID: 2970289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac contractile proteins in hypertrophied and failing guinea pig heart.
    Malhotra A; Siri FM; Aronson R
    Cardiovasc Res; 1992 Feb; 26(2):153-61. PubMed ID: 1533346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple cardiac contractile protein abnormalities in myopathic Syrian hamsters (BIO 53 : 58).
    Malhotra A; Karell M; Scheuer J
    J Mol Cell Cardiol; 1985 Feb; 17(2):95-107. PubMed ID: 3158746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shortening velocity and myosin and myofibrillar ATPase activity related to myosin isoenzyme composition during postnatal development in rat myocardium.
    Cappelli V; Bottinelli R; Poggesi C; Moggio R; Reggiani C
    Circ Res; 1989 Aug; 65(2):446-57. PubMed ID: 2526695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy.
    Meyer M; Schillinger W; Pieske B; Holubarsch C; Heilmann C; Posival H; Kuwajima G; Mikoshiba K; Just H; Hasenfuss G
    Circulation; 1995 Aug; 92(4):778-84. PubMed ID: 7641356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoform-independent heart rate-related variation in cardiac myofibrillar Ca(2+)-activated Mg(2+)-ATPase activity.
    Rouslin W; Broge CW
    Am J Physiol; 1996 May; 270(5 Pt 1):C1271-6. PubMed ID: 8967425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts.
    Baker DL; Hashimoto K; Grupp IL; Ji Y; Reed T; Loukianov E; Grupp G; Bhagwhat A; Hoit B; Walsh R; Marban E; Periasamy M
    Circ Res; 1998 Dec 14-28; 83(12):1205-14. PubMed ID: 9851937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contractile proteins and sarcoplasmic reticulum in physiologic cardiac hypertrophy.
    Malhotra A; Penpargkul S; Schaible T; Scheuer J
    Am J Physiol; 1981 Aug; 241(2):H263-7. PubMed ID: 6455923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential changes in cardiac myofibrillar and sarcoplasmic reticular gene expression in alloxan-induced diabetes.
    Golfman L; Dixon IM; Takeda N; Chapman D; Dhalla NS
    Mol Cell Biochem; 1999 Oct; 200(1-2):15-25. PubMed ID: 10569179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation and functional modifications of sarcoplasmic reticulum and myofibrils in isolated rabbit hearts stimulated with isoprenaline.
    Kranias EG; Garvey JL; Srivastava RD; Solaro RJ
    Biochem J; 1985 Feb; 226(1):113-21. PubMed ID: 3156585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical transformation of canine skeletal muscle for use in cardiac-assist devices.
    Ianuzzo CD; Hamilton N; O'Brien PJ; Desrosiers C; Chiu R
    J Appl Physiol (1985); 1990 Apr; 68(4):1481-5. PubMed ID: 2140828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aging on sarcoplasmic reticulum Ca2+-cycling proteins and their phosphorylation in rat myocardium.
    Xu A; Narayanan N
    Am J Physiol; 1998 Dec; 275(6):H2087-94. PubMed ID: 9843808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of SR Ca2+-ATPase in contractile dysfunction of myocytes in tachycardia-induced heart failure.
    Igarashi-Saito K; Tsutsui H; Yamamoto S; Takahashi M; Kinugawa S; Tagawa H; Usui M; Yamamoto M; Egashira K; Takeshita A
    Am J Physiol; 1998 Jul; 275(1):H31-40. PubMed ID: 9688893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormonal influences on cardiac myosin ATPase activity and myosin isoenzyme distribution.
    Dillmann WH
    Mol Cell Endocrinol; 1984 Mar; 34(3):169-81. PubMed ID: 6232163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of exercise-trained porcine myocardium.
    Laughlin MH; Hale CC; Novela L; Gute D; Hamilton N; Ianuzzo CD
    J Appl Physiol (1985); 1991 Jul; 71(1):229-35. PubMed ID: 1833367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATPase activity of myosin correlated with speed of muscle shortening.
    Bárány M
    J Gen Physiol; 1967 Jul; 50(6):Suppl:197-218. PubMed ID: 4227924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation between myosin adenosinetriphosphatase activity and inactivation of myosin under alkaline conditions of heart muscles in mammals of different size.
    Syrový I
    Pflugers Arch; 1975 Apr; 356(1):87-92. PubMed ID: 651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.