These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16562131)

  • 1. Metabolism of Pipecolic Acid in a Pseudomonas Species IV. Electron Transport Particle of Pseudomonas putida.
    Baginsky ML; Rodwell VW
    J Bacteriol; 1966 Aug; 92(2):424-32. PubMed ID: 16562131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of pipecolic acid in a Pseudomonas species. V. Pipecolate oxidase and dehydrogenase.
    Baginsky ML; Rodwell VW
    J Bacteriol; 1967 Oct; 94(4):1034-9. PubMed ID: 6051341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diaphorases from Aerobacter aerogenes.
    Bernofsky C; Mills RC
    J Bacteriol; 1966 Nov; 92(5):1404-14. PubMed ID: 5924271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2.
    Shaw JP; Harayama S
    Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochromelinked fermentation in Bacteroides ruminicola.
    WHITE DC; BRYANT MP; CALDWELL DR
    J Bacteriol; 1962 Oct; 84(4):822-8. PubMed ID: 14000291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-hydroxyglutarate oxidoreductase of Pseudomonas putida.
    Reitz MS; Rodwell VW
    J Bacteriol; 1969 Nov; 100(2):708-14. PubMed ID: 5354943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Respiratory Chain of Plant Mitochondria. III. Oxidation Rates of the Cytochromes c and b in Mung Bean Mitochondria Reduced With Succinate.
    Storey BT
    Plant Physiol; 1969 Mar; 44(3):413-21. PubMed ID: 16657077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01.
    Ohta Y; Higgins I; Ribbons DW
    J Biol Chem; 1975 May; 250(10):3814-25. PubMed ID: 1126936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in cytochrome content and electron transport patterns in Pseudomonas putida as a function of growth phase.
    Sweet WJ; Peterson JA
    J Bacteriol; 1978 Jan; 133(1):217-24. PubMed ID: 618838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-malate oxidation by the electron transport fraction of Azotobacter vinelandii.
    Jurtshuk P; Bednarz AJ; Zey P; Denton CH
    J Bacteriol; 1969 Jun; 98(3):1120-7. PubMed ID: 4977982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. delta1-piperideine-2-carboxylate reductase of Pseudomonas putida.
    Payton CW; Chang YF
    J Bacteriol; 1982 Mar; 149(3):864-71. PubMed ID: 6801013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. I. LACTATE OXIDATION BY MYCOPLASMA GALLISEPTICUM.
    SMITH SL; VANDEMARK PJ; FABRICANT J
    J Bacteriol; 1963 Nov; 86(5):893-7. PubMed ID: 14080798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced nicotinamide adenine dinucleotide oxidase activity and H2O2 formation of Mycoplasma pneumoniae.
    Low IE; Zimkus SM
    J Bacteriol; 1973 Oct; 116(1):346-54. PubMed ID: 4147646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pipecolic acid biosynthesis in Rhizoctonia leguminicola. I. The lysine saccharopine, delta 1-piperideine-6-carboxylic acid pathway.
    Wickwire BM; Harris CM; Harris TM; Broquist HP
    J Biol Chem; 1990 Sep; 265(25):14742-7. PubMed ID: 2118517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple forms of cytochrome b in Mycobacterium phlei: kinetics of reduction.
    Cohen NS; Brodie AF
    J Bacteriol; 1975 Jul; 123(1):162-73. PubMed ID: 166977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of NikD, a new flavoenzyme important in the biosynthesis of nikkomycin antibiotics.
    Venci D; Zhao G; Jorns MS
    Biochemistry; 2002 Dec; 41(52):15795-802. PubMed ID: 12501208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory mechanisms in the Flexibacteriaceae: terminal oxidase systems of Saprospira grandis and Vitreoscilla species.
    Dietrich WE; Biggins J
    J Bacteriol; 1971 Mar; 105(3):1083-9. PubMed ID: 4323292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electron transport system of the anaerobic Propionibacterium shermanii: cytochrome and inhibitor studies.
    Schwartz AC; Sporkenbach J
    Arch Microbiol; 1975 Mar; 102(3):261-73. PubMed ID: 168827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.