These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 16562628)

  • 1. Robust classification of EEG signal for brain-computer interface.
    Thulasidas M; Guan C; Wu J
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):24-9. PubMed ID: 16562628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BCI Competition 2003--Data set IIb: support vector machines for the P300 speller paradigm.
    Kaper M; Meinicke P; Grossekathoefer U; Lingner T; Ritter H
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1073-6. PubMed ID: 15188881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved P300-based brain-computer interface.
    Serby H; Yom-Tov E; Inbar GF
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):89-98. PubMed ID: 15813410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A regularized discriminative framework for EEG analysis with application to brain-computer interface.
    Tomioka R; Müller KR
    Neuroimage; 2010 Jan; 49(1):415-32. PubMed ID: 19646534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient P300-based brain-computer interface for disabled subjects.
    Hoffmann U; Vesin JM; Ebrahimi T; Diserens K
    J Neurosci Methods; 2008 Jan; 167(1):115-25. PubMed ID: 17445904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N200-speller using motion-onset visual response.
    Hong B; Guo F; Liu T; Gao X; Gao S
    Clin Neurophysiol; 2009 Sep; 120(9):1658-66. PubMed ID: 19640783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dictionary-driven P300 speller with a modified interface.
    Ahi ST; Kambara H; Koike Y
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):6-14. PubMed ID: 20457551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overlap and refractory effects in a brain-computer interface speller based on the visual P300 event-related potential.
    Martens SM; Hill NJ; Farquhar J; Schölkopf B
    J Neural Eng; 2009 Apr; 6(2):026003. PubMed ID: 19255462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm.
    Yin E; Zhou Z; Jiang J; Chen F; Liu Y; Hu D
    J Neural Eng; 2013 Apr; 10(2):026012. PubMed ID: 23429035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-paced and calibration-less SSVEP-based brain-computer interface speller.
    Cecotti H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):127-33. PubMed ID: 20071274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P300 Chinese input system based on Bayesian LDA.
    Jin J; Allison BZ; Brunner C; Wang B; Wang X; Zhang J; Neuper C; Pfurtscheller G
    Biomed Tech (Berl); 2010 Feb; 55(1):5-18. PubMed ID: 20128741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional neural networks for P300 detection with application to brain-computer interfaces.
    Cecotti H; Gräser A
    IEEE Trans Pattern Anal Mach Intell; 2011 Mar; 33(3):433-45. PubMed ID: 20567055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive training session for a P300 speller brain-computer interface.
    Rivet B; Cecotti H; Perrin M; Maby E; Mattout J
    J Physiol Paris; 2011; 105(1-3):123-9. PubMed ID: 21843639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flashing characters with famous faces improves ERP-based brain-computer interface performance.
    Kaufmann T; Schulz SM; Grünzinger C; Kübler A
    J Neural Eng; 2011 Oct; 8(5):056016. PubMed ID: 21934188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexibility and practicality graz brain-computer interface approach.
    Scherer R; Müller-Putz GR; Pfurtscheller G
    Int Rev Neurobiol; 2009; 86():119-31. PubMed ID: 19607995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An adaptive P300-based online brain-computer interface.
    Lenhardt A; Kaper M; Ritter HJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):121-30. PubMed ID: 18403280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised brain computer interface based on intersubject information and online adaptation.
    Lu S; Guan C; Zhang H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):135-45. PubMed ID: 19228561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance.
    Sellers EW; Krusienski DJ; McFarland DJ; Vaughan TM; Wolpaw JR
    Biol Psychol; 2006 Oct; 73(3):242-52. PubMed ID: 16860920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.