BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16562985)

  • 1. Characterizing bitterness: identification of key structural features and development of a classification model.
    Rodgers S; Glen RC; Bender A
    J Chem Inf Model; 2006; 46(2):569-76. PubMed ID: 16562985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building a tree of knowledge: analysis of bitter molecules.
    Rodgers S; Busch J; Peters H; Christ-Hazelhof E
    Chem Senses; 2005 Sep; 30(7):547-57. PubMed ID: 16079246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of sodium salts on binary mixtures of bitter-tasting compounds.
    Keast RS; Canty TM; Breslin PA
    Chem Senses; 2004 Jun; 29(5):431-9. PubMed ID: 15201210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance.
    Bender A; Mussa HY; Glen RC; Reiling S
    J Chem Inf Comput Sci; 2004; 44(5):1708-18. PubMed ID: 15446830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory activity, chemical structure, and synthesis of Maillard generated bitter-tasting 1-oxo-2,3-dihydro-1H-indolizinium-6-olates.
    Frank O; Jezussek M; Hofmann T
    J Agric Food Chem; 2003 Apr; 51(9):2693-9. PubMed ID: 12696959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A naive bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing.
    Sun H
    J Med Chem; 2005 Jun; 48(12):4031-9. PubMed ID: 15943476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging chemical patterns: a new methodology for molecular classification and compound selection.
    Auer J; Bajorath J
    J Chem Inf Model; 2006; 46(6):2502-14. PubMed ID: 17125191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin.
    Pronin AN; Xu H; Tang H; Zhang L; Li Q; Li X
    Curr Biol; 2007 Aug; 17(16):1403-8. PubMed ID: 17702579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?
    Ajay A; Walters WP; Murcko MA
    J Med Chem; 1998 Aug; 41(18):3314-24. PubMed ID: 9719583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS.
    Frank O; Blumberg S; Kunert C; Zehentbauer G; Hofmann T
    J Agric Food Chem; 2007 Mar; 55(5):1945-54. PubMed ID: 17269788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substructure mining using elaborate chemical representation.
    Kazius J; Nijssen S; Kok J; Bäck T; Ijzerman AP
    J Chem Inf Model; 2006; 46(2):597-605. PubMed ID: 16562988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the key bitter compounds in our daily diet is a prerequisite for the understanding of the hTAS2R gene polymorphisms affecting food choice.
    Hofmann T
    Ann N Y Acad Sci; 2009 Jul; 1170():116-25. PubMed ID: 19686121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering and rule-based classifications of chemical structures evaluated in the biological activity space.
    Schuffenhauer A; Brown N; Ertl P; Jenkins JL; Selzer P; Hamon J
    J Chem Inf Model; 2007; 47(2):325-36. PubMed ID: 17286395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automated method for exploring targeted substructural diversity within sets of chemical structures.
    Raymond JW; Kibbey CE
    J Chem Inf Model; 2005; 45(5):1195-204. PubMed ID: 16180896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BitterSweetForest: A Random Forest Based Binary Classifier to Predict Bitterness and Sweetness of Chemical Compounds.
    Banerjee P; Preissner R
    Front Chem; 2018; 6():93. PubMed ID: 29696137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of in silico models for estimating drug preformulation risk in PEG400/water and Tween80/water systems.
    Crivori P; Morelli A; Pezzetta D; Rocchetti M; Poggesi I
    Eur J Pharm Sci; 2007 Nov; 32(3):169-81. PubMed ID: 17714921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling promiscuity based on in vitro safety pharmacology profiling data.
    Azzaoui K; Hamon J; Faller B; Whitebread S; Jacoby E; Bender A; Jenkins JL; Urban L
    ChemMedChem; 2007 Jun; 2(6):874-80. PubMed ID: 17492703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting antitrichomonal activity: a computational screening using atom-based bilinear indices and experimental proofs.
    Marrero-Ponce Y; Meneses-Marcel A; Castillo-Garit JA; Machado-Tugores Y; Escario JA; Barrio AG; Pereira DM; Nogal-Ruiz JJ; Arán VJ; Martínez-Fernández AR; Torrens F; Rotondo R; Ibarra-Velarde F; Alvarado YJ
    Bioorg Med Chem; 2006 Oct; 14(19):6502-24. PubMed ID: 16875830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.
    Kawai K; Fujishima S; Takahashi Y
    J Chem Inf Model; 2008 Jun; 48(6):1152-60. PubMed ID: 18533712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New bitter-masking compounds: hydroxylated benzoic acid amides of aromatic amines as structural analogues of homoeriodictyol.
    Ley JP; Blings M; Paetz S; Krammer GE; Bertram HJ
    J Agric Food Chem; 2006 Nov; 54(22):8574-9. PubMed ID: 17061836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.