BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1656300)

  • 1. Indirect action of elevated potassium and neuropeptide Y on alpha MSH secretion from the pars intermedia of Xenopus laevis: a biochemical and morphological study.
    de Koning HP; Jenks BG; Scheenen WJ; de Rijk EP; Caris RT; Roubos EW
    Neuroendocrinology; 1991 Jul; 54(1):68-76. PubMed ID: 1656300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [125I]Bolton-Hunter neuropeptide-Y-binding sites on folliculo-stellate cells of the pars intermedia of Xenopus laevis: a combined autoradiographic and immunocytochemical study.
    De Rijk EP; Cruijsen PM; Jenks BG; Roubos EW
    Endocrinology; 1991 Feb; 128(2):735-40. PubMed ID: 1989860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuropeptide Y inhibits Ca2+ oscillations, cyclic AMP, and secretion in melanotrope cells of Xenopus laevis via a Y1 receptor.
    Scheenen WJ; Yntema HG; Willems PH; Roubos EW; Lieste JR; Jenks BG
    Peptides; 1995; 16(5):889-95. PubMed ID: 7479331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropeptide Y inhibits spontaneous alpha-melanocyte-stimulating hormone (alpha-MSH) release via a Y(5) receptor and suppresses thyrotropin-releasing hormone-induced alpha-MSH secretion via a Y(1) receptor in frog melanotrope cells.
    Galas L; Tonon MC; Beaujean D; Fredriksson R; Larhammar D; Lihrmann I; Jegou S; Fournier A; Chartrel N; Vaudry H
    Endocrinology; 2002 May; 143(5):1686-94. PubMed ID: 11956150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis.
    Leenders HJ; de Koning HP; Ponten SP; Jenks BG; Roubos EW
    Life Sci; 1993; 52(24):1969-75. PubMed ID: 8389412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis.
    Kolk SM; Berghs CA; Vaudry H; Verhage M; Roubos EW
    Endocrinology; 2001 May; 142(5):1950-7. PubMed ID: 11316760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis.
    Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW
    J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melanotrophs of Xenopus laevis do respond directly to neuropeptide-Y as evidenced by reductions in secretion and cytosolic calcium pulsing in isolated cells.
    Kongsamut S; Shibuya I; Uehara M; Douglas WW
    Endocrinology; 1993 Jul; 133(1):336-42. PubMed ID: 8391427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of coexisting catecholamine (dopamine), amino acid (GABA), and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative ultrastructural, freeze-substitution immunocytochemical study.
    de Rijk EP; van Strien FJ; Roubos EW
    J Neurosci; 1992 Mar; 12(3):864-71. PubMed ID: 1312137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis.
    de Koning HP; Jenks BG; Scheenen WJ; Balm PH; Roubos EW
    Gen Comp Endocrinol; 1992 Sep; 87(3):394-401. PubMed ID: 1330808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study.
    Ubink R; Tuinhof R; Roubos EW
    J Comp Neurol; 1998 Jul; 397(1):60-8. PubMed ID: 9671279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis.
    Scheenen WJ; Jenks BG; Willems PH; Roubos EW
    Pflugers Arch; 1994 Jun; 427(3-4):244-51. PubMed ID: 8072842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface.
    Jenks BG; Ouwens DT; Coolen MW; Roubos EW; Martens GJ
    J Neuroendocrinol; 2002 Nov; 14(11):843-5. PubMed ID: 12421336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis.
    de Rijk EP; Terlou M; Cruijsen PM; Jenks BG; Roubos EW
    Cytometry; 1992; 13(8):863-71. PubMed ID: 1333944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential action of secreto-inhibitors on proopiomelanocortin biosynthesis in the intermediate pituitary of Xenopus laevis.
    Dotman CH; Cruijsen PM; Jenks BG; Roubos EW
    Endocrinology; 1996 Nov; 137(11):4551-7. PubMed ID: 8895316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis.
    Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG
    Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central control of melanotrope cells of Xenopus laevis.
    Tuinhof R; González A; Smeets WJ; Scheenen WJ; Roubos EW
    Eur J Morphol; 1994 Aug; 32(2-4):307-10. PubMed ID: 7803185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis.
    Jenks BG; Kidane AH; Scheenen WJ; Roubos EW
    Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA and neuropeptide Y co-exist in axons innervating the neurointermediate lobe of the pituitary of Xenopus laevis--an immunoelectron microscopic study.
    de Rijk EP; Jenks BG; Vaudry H; Roubos EW
    Neuroscience; 1990; 38(2):495-502. PubMed ID: 1702192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphibian melanotrope subpopulations respond differentially to hypothalamic secreto-inhibitors.
    Vázquez-Martínez R; Malagón MM; Castaño JP; Tonon MC; Vaudry H; Gracia-Navarro F
    Neuroendocrinology; 2001 Jun; 73(6):426-34. PubMed ID: 11408784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.