BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16563003)

  • 1. Using pharmacophore models to gain insight into structural binding and virtual screening: an application study with CDK2 and human DHFR.
    Toba S; Srinivasan J; Maynard AJ; Sutter J
    J Chem Inf Model; 2006; 46(2):728-35. PubMed ID: 16563003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards more accurate pharmacophore modeling: Multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2.
    Zou J; Xie HZ; Yang SY; Chen JJ; Ren JX; Wei YQ
    J Mol Graph Model; 2008 Nov; 27(4):430-8. PubMed ID: 18786843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation.
    Cross S; Baroni M; Goracci L; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2587-98. PubMed ID: 22970894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharao: pharmacophore alignment and optimization.
    Taminau J; Thijs G; De Winter H
    J Mol Graph Model; 2008 Sep; 27(2):161-9. PubMed ID: 18485770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting multiple ligand binding modes using self-consistent pharmacophore hypotheses.
    Wallach I; Lilien R
    J Chem Inf Model; 2009 Sep; 49(9):2116-28. PubMed ID: 19711952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein structures in virtual screening: a case study with CDK2.
    Thomas MP; McInnes C; Fischer PM
    J Med Chem; 2006 Jan; 49(1):92-104. PubMed ID: 16392795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel serotonin 2C receptor ligands by sequential virtual screening.
    Ahmed A; Choo H; Cho YS; Park WK; Pae AN
    Bioorg Med Chem; 2009 Jul; 17(13):4559-68. PubMed ID: 19464901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A virtual screening approach for thymidine monophosphate kinase inhibitors as antitubercular agents based on docking and pharmacophore models.
    Gopalakrishnan B; Aparna V; Jeevan J; Ravi M; Desiraju GR
    J Chem Inf Model; 2005; 45(4):1101-8. PubMed ID: 16045305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecule-pharmacophore superpositioning and pattern matching in computational drug design.
    Wolber G; Seidel T; Bendix F; Langer T
    Drug Discov Today; 2008 Jan; 13(1-2):23-9. PubMed ID: 18190860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiobjective optimization of pharmacophore hypotheses: bias toward low-energy conformations.
    Gardiner EJ; Cosgrove DA; Taylor R; Gillet VJ
    J Chem Inf Model; 2009 Dec; 49(12):2761-73. PubMed ID: 19908873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel screening: a novel concept in pharmacophore modeling and virtual screening.
    Steindl TM; Schuster D; Laggner C; Langer T
    J Chem Inf Model; 2006; 46(5):2146-57. PubMed ID: 16995745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New scoring functions for virtual screening from molecular dynamics simulations with a quantum-refined force-field (QRFF-MD). Application to cyclin-dependent kinase 2.
    Ferrara P; Curioni A; Vangrevelinghe E; Meyer T; Mordasini T; Andreoni W; Acklin P; Jacoby E
    J Chem Inf Model; 2006; 46(1):254-63. PubMed ID: 16426061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for generating less toxic P-selectin inhibitors: pharmacophore modeling, virtual screening and counter pharmacophore screening to remove toxic hits.
    Ananthula RS; Ravikumar M; Pramod AB; Madala KK; Mahmood SK
    J Mol Graph Model; 2008 Nov; 27(4):546-57. PubMed ID: 18993099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening.
    Rastelli G; Degliesposti G; Del Rio A; Sgobba M
    Chem Biol Drug Des; 2009 Mar; 73(3):283-6. PubMed ID: 19207463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the P2 and P3 ligand binding features for hepatitis C virus NS3 protease using some 3D QSAR techniques.
    Wei HY; Lu CS; Lin TH
    J Mol Graph Model; 2008 Apr; 26(7):1131-44. PubMed ID: 18024210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-derived three-dimensional pharmacophore models for G-protein-coupled receptors and their application in virtual screening.
    Klabunde T; Giegerich C; Evers A
    J Med Chem; 2009 May; 52(9):2923-32. PubMed ID: 19374402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function.
    Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D
    Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards in silico lead optimization: scores from ensembles of protein/ligand conformations reliably correlate with biological activity.
    Popov VM; Yee WA; Anderson AC
    Proteins; 2007 Feb; 66(2):375-87. PubMed ID: 17078091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective pharmacophore models of dopamine D(1) and D(2) full agonists based on extended pharmacophore features.
    Malo M; Brive L; Luthman K; Svensson P
    ChemMedChem; 2010 Feb; 5(2):232-46. PubMed ID: 20077461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.
    Wolber G; Langer T
    J Chem Inf Model; 2005; 45(1):160-9. PubMed ID: 15667141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.