These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16563011)

  • 1. The electronic structures and properties of open-ended and capped carbon nanoneedles.
    Wang JL; Mezey PG
    J Chem Inf Model; 2006; 46(2):801-7. PubMed ID: 16563011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and electronic properties of nitrogen nanoneedles and nanotubes.
    Wang JL; Lushington GH; Mezey PG
    J Chem Inf Model; 2006; 46(5):1965-71. PubMed ID: 16995727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the structure-property relationships of nanoneedles: A journey toward nanomedicine.
    Poater A; Saliner AG; Carbó-Dorca R; Poater J; Solà M; Cavallo L; Worth AP
    J Comput Chem; 2009 Jan; 30(2):275-84. PubMed ID: 18615420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Walczak B; Autschbach J
    J Phys Chem A; 2006 Nov; 110(43):11995-2004. PubMed ID: 17064188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance.
    Meunier V; Sumpter BG
    J Chem Phys; 2005 Jul; 123(2):24705. PubMed ID: 16050764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic properties of capped, finite-length armchair carbon nanotubes in an electric field.
    Chen C; Tsai CC; Lu JM; Hwang CC
    J Phys Chem B; 2006 Jun; 110(25):12384-7. PubMed ID: 16800563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic properties of n-type carbon nanotubes prepared by CF4 plasma fluorination and amino functionalization.
    Plank NO; Forrest GA; Cheung R; Alexander AJ
    J Phys Chem B; 2005 Dec; 109(47):22096-101. PubMed ID: 16853875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic-type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron-donor molecules.
    Zhou J; Maeda Y; Lu J; Tashiro A; Hasegawa T; Luo G; Wang L; Lai L; Akasaka T; Nagase S; Gao Z; Qin R; Mei WN; Li G; Yu D
    Small; 2009 Feb; 5(2):244-55. PubMed ID: 19058283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconducting cyanide-transition-metal nanotubes.
    Mo Y; Kaxiras E
    Small; 2007 Jul; 3(7):1253-8. PubMed ID: 17506041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
    Kang SJ; Kocabas C; Ozel T; Shim M; Pimparkar N; Alam MA; Rotkin SV; Rogers JA
    Nat Nanotechnol; 2007 Apr; 2(4):230-6. PubMed ID: 18654268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncovalent functionalization of single-walled carbon nanotubes.
    Zhao YL; Stoddart JF
    Acc Chem Res; 2009 Aug; 42(8):1161-71. PubMed ID: 19462997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and electronic properties of peanut-shaped dimers and carbon nanotubes.
    Wang G; Li Y; Huang Y
    J Phys Chem B; 2005 Jun; 109(21):10957-61. PubMed ID: 16852334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts.
    Lu J; Lai L; Luo G; Zhou J; Qin R; Wang D; Wang L; Mei WN; Li G; Gao Z; Nagase S; Maeda Y; Akasaka T; Yu D
    Small; 2007 Sep; 3(9):1566-76. PubMed ID: 17705313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorting carbon nanotubes for electronics.
    Martel R
    ACS Nano; 2008 Nov; 2(11):2195-9. PubMed ID: 19206382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defects in carbon nanostructures.
    Zhou O; Fleming RM; Murphy DW; Chen CH; Haddon RC; Ramirez AP; Glarum SH
    Science; 1994 Mar; 263(5154):1744-7. PubMed ID: 17795381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.