These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16563015)

  • 1. A novel search engine for virtual screening of very large databases.
    Vidal D; Thormann M; Pons M
    J Chem Inf Model; 2006; 46(2):836-43. PubMed ID: 16563015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.
    Mizutani MY; Itai A
    J Med Chem; 2004 Sep; 47(20):4818-28. PubMed ID: 15369385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the EGEE grid.
    Kasam V; Zimmermann M; Maass A; Schwichtenberg H; Wolf A; Jacq N; Breton V; Hofmann-Apitius M
    J Chem Inf Model; 2007; 47(5):1818-28. PubMed ID: 17727268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced virtual screening by combined use of two docking methods: getting the most on a limited budget.
    Maiorov V; Sheridan RP
    J Chem Inf Model; 2005; 45(4):1017-23. PubMed ID: 16045296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A knowledge-based weighting approach to ligand-based virtual screening.
    Stiefl N; Zaliani A
    J Chem Inf Model; 2006; 46(2):587-96. PubMed ID: 16562987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual screening with flexible docking and COMBINE-based models. Application to a series of factor Xa inhibitors.
    Murcia M; Ortiz AR
    J Med Chem; 2004 Feb; 47(4):805-20. PubMed ID: 14761183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and efficient in silico 3D screening: toward maximum computational efficiency of pharmacophore-based and shape-based approaches.
    Kirchmair J; Ristic S; Eder K; Markt P; Wolber G; Laggner C; Langer T
    J Chem Inf Model; 2007; 47(6):2182-96. PubMed ID: 17929799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SMIREP: predicting chemical activity from SMILES.
    Karwath A; De Raedt L
    J Chem Inf Model; 2006; 46(6):2432-44. PubMed ID: 17125185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioisosteric similarity of molecules based on structural alignment and observed chemical replacements in drugs.
    Krier M; Hutter MC
    J Chem Inf Model; 2009 May; 49(5):1280-97. PubMed ID: 19402687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of chemical information in OASIS centralized 3D database for existing chemicals.
    Nikolov N; Grancharov V; Stoyanova G; Pavlov T; Mekenyan O
    J Chem Inf Model; 2006; 46(6):2537-51. PubMed ID: 17125194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields.
    Kalliokoski T; Ronkko T; Poso A
    J Chem Inf Model; 2008 Jun; 48(6):1131-7. PubMed ID: 18489083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible docking of ligands into synthetic receptors using a two-sided incremental construction algorithm.
    Steffen A; Kämper A; Lengauer T
    J Chem Inf Model; 2006; 46(4):1695-703. PubMed ID: 16859301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual screening and scaffold hopping based on GRID molecular interaction fields.
    Ahlström MM; Ridderström M; Luthman K; Zamora I
    J Chem Inf Model; 2005; 45(5):1313-23. PubMed ID: 16180908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the active site of human factor Xa protein by NMR screening of small molecule probes.
    Fielding L; Fletcher D; Rutherford S; Kaur J; Mestres J
    Org Biomol Chem; 2003 Dec; 1(23):4235-41. PubMed ID: 14685325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments.
    Ebalunode JO; Zheng W
    J Chem Inf Model; 2009 Jun; 49(6):1313-20. PubMed ID: 19480404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating virtual screening in lead discovery.
    Oprea TI; Matter H
    Curr Opin Chem Biol; 2004 Aug; 8(4):349-58. PubMed ID: 15288243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha sphere filter method: Application of pseudomolecular descriptors in virtual screening of 2D chemical structures.
    Muta H; Hirayama N
    J Comput Chem; 2010 Aug; 31(11):2225-32. PubMed ID: 20340104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.