These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16563561)

  • 1. Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials.
    Jaesche P; Totsche KU; Kögel-Knabner I
    J Contam Hydrol; 2006 May; 85(3-4):271-86. PubMed ID: 16563561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory-scale evaluation of a combined soil amendment for the enhanced biodegradation of propylene glycol-based aircraft de-icing fluids.
    Libisch B; French HK; Hartnik T; Anton A; Biró B
    Environ Technol; 2012; 33(4-6):717-24. PubMed ID: 22629648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the kinetics of microbial degradation of deicing chemicals in porous media under flow conditions.
    Wehrer M; Jaesche P; Totsche KU
    Environ Pollut; 2012 Sep; 168():96-106. PubMed ID: 22609860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints of propylene glycol degradation at low temperatures and saturated flow conditions.
    Lissner H; Wehrer M; Reinicke M; Horváth N; Totsche KU
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):3158-74. PubMed ID: 25239107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of aircraft deicing fluids in soil at low temperatures.
    Klecka GM; Carpenter CL; Landenberger BD
    Ecotoxicol Environ Saf; 1993 Jun; 25(3):280-95. PubMed ID: 7691522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment.
    Yang S; Yoshida N; Baba D; Katayama A
    Chemosphere; 2008 Mar; 71(2):328-36. PubMed ID: 17950776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility.
    Bauer M; Fulda B; Blodau C
    Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of fenamiphos in soils collected from different geographical regions: the influence of soil properties and climatic conditions.
    Cáceres T; Megharaj M; Naidu R
    J Environ Sci Health B; 2008 May; 43(4):314-22. PubMed ID: 18437619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural and enhanced biodegradation of propylene glycol in airport soil.
    Toscano G; Colarieti ML; Anton A; Greco G; Biró B
    Environ Sci Pollut Res Int; 2014; 21(15):9028-35. PubMed ID: 23828729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variation of microbial ecology in hemlock soil of Tatachia Mountain, Taiwan.
    Yang SS; Tsai SH; Fan HY; Yang CK; Hung WL; Cho ST
    J Microbiol Immunol Infect; 2006 Jun; 39(3):195-205. PubMed ID: 16783449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature and water content on degradation of isoproturon in three soil profiles.
    Alletto L; Coquet Y; Benoit P; Bergheaud V
    Chemosphere; 2006 Aug; 64(7):1053-61. PubMed ID: 16426661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of microbial redox conditions on the phase distribution of pyrene in soil-water systems.
    Kim HS; Roper JC; Pfaender FK
    Environ Pollut; 2008 Mar; 152(1):106-15. PubMed ID: 17629603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertical and horizontal distributions of microbial abundances and enzymatic activities in propylene-glycol-affected soils.
    Biró B; Toscano G; Horváth N; Matics H; Domonkos M; Scotti R; Rao MA; Wejden B; French HK
    Environ Sci Pollut Res Int; 2014; 21(15):9095-108. PubMed ID: 24627198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils.
    Perfumo A; Banat IM; Marchant R; Vezzulli L
    Chemosphere; 2007 Jan; 66(1):179-84. PubMed ID: 16782171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation of acetochlor and its distribution in surface and sub-surface soil fractions during laboratory incubations.
    Taylor JP; Mills MS; Burns RG
    Pest Manag Sci; 2005 Jun; 61(6):539-48. PubMed ID: 15657909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation and chiral stability of fipronil in aerobic and flooded paddy soils.
    Tan H; Cao Y; Tang T; Qian K; Chen WL; Li J
    Sci Total Environ; 2008 Dec; 407(1):428-37. PubMed ID: 18835630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low temperature biodegradation of airport de-icing fluids.
    Revitt DM; Worrall P
    Water Sci Technol; 2003; 48(9):103-11. PubMed ID: 14703144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial reduction of 99Tc in organic matter-rich soils.
    Abdelouas A; Grambow B; Fattahi M; Andrès Y; Leclerc-Cessac E
    Sci Total Environ; 2005 Jan; 336(1-3):255-68. PubMed ID: 15589263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A laboratory study of landfill-leachate transport in soils.
    Islam J; Singhal N
    Water Res; 2004 Apr; 38(8):2035-42. PubMed ID: 15087184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.