These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
634 related articles for article (PubMed ID: 16563706)
1. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Yang ST; Shin SY; Hahm KS; Kim JI Int J Antimicrob Agents; 2006 Apr; 27(4):325-30. PubMed ID: 16563706 [TBL] [Abstract][Full Text] [Related]
2. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide. Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217 [TBL] [Abstract][Full Text] [Related]
3. Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Yang ST; Yub Shin SY; Kim YC; Kim Y; Hahm KS; Kim JI Biochem Biophys Res Commun; 2002 Sep; 296(5):1044-50. PubMed ID: 12207877 [TBL] [Abstract][Full Text] [Related]
4. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205 [TBL] [Abstract][Full Text] [Related]
5. Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. Zhu WL; Hahm KS; Shin SY J Pept Sci; 2009 Sep; 15(9):569-75. PubMed ID: 19455552 [TBL] [Abstract][Full Text] [Related]
6. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
7. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
8. Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Nan YH; Bang JK; Shin SY Peptides; 2009 May; 30(5):832-8. PubMed ID: 19428758 [TBL] [Abstract][Full Text] [Related]
9. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Yu HY; Huang KC; Yip BS; Tu CH; Chen HL; Cheng HT; Cheng JW Chembiochem; 2010 Nov; 11(16):2273-82. PubMed ID: 20865718 [TBL] [Abstract][Full Text] [Related]
10. Membrane interactions of designed cationic antimicrobial peptides: the two thresholds. Glukhov E; Burrows LL; Deber CM Biopolymers; 2008 May; 89(5):360-71. PubMed ID: 18186149 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial activity of short arginine- and tryptophan-rich peptides. Strøm MB; Rekdal O; Svendsen JS J Pept Sci; 2002 Aug; 8(8):431-7. PubMed ID: 12212806 [TBL] [Abstract][Full Text] [Related]
12. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action. Avrahami D; Shai Y Biochemistry; 2003 Dec; 42(50):14946-56. PubMed ID: 14674771 [TBL] [Abstract][Full Text] [Related]
13. Structure-activity relationship of indolicidin, a Trp-rich antibacterial peptide. Ando S; Mitsuyasu K; Soeda Y; Hidaka M; Ito Y; Matsubara K; Shindo M; Uchida Y; Aoyagi H J Pept Sci; 2010 Apr; 16(4):171-7. PubMed ID: 20196123 [TBL] [Abstract][Full Text] [Related]
14. Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure. Yang ST; Shin SY; Lee CW; Kim YC; Hahm KS; Kim JI FEBS Lett; 2003 Apr; 540(1-3):229-33. PubMed ID: 12681513 [TBL] [Abstract][Full Text] [Related]
15. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Chou HT; Kuo TY; Chiang JC; Pei MJ; Yang WT; Yu HC; Lin SB; Chen WJ Int J Antimicrob Agents; 2008 Aug; 32(2):130-8. PubMed ID: 18586467 [TBL] [Abstract][Full Text] [Related]
16. Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. Shin S; Kim JK; Lee JY; Jung KW; Hwang JS; Lee J; Lee DG; Kim I; Shin SY; Kim Y J Pept Sci; 2009 Sep; 15(9):559-68. PubMed ID: 19598182 [TBL] [Abstract][Full Text] [Related]
17. Reverse engineering truncations of an antimicrobial peptide dimer to identify the origins of potency and broad spectrum of action. Anantharaman A; Sahal D J Med Chem; 2010 Aug; 53(16):6079-88. PubMed ID: 20681539 [TBL] [Abstract][Full Text] [Related]
18. Macrocyclic hairpin mimetics of the cationic antimicrobial peptide protegrin I: a new family of broad-spectrum antibiotics. Shankaramma SC; Athanassiou Z; Zerbe O; Moehle K; Mouton C; Bernardini F; Vrijbloed JW; Obrecht D; Robinson JA Chembiochem; 2002 Nov; 3(11):1126-33. PubMed ID: 12404639 [TBL] [Abstract][Full Text] [Related]
19. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S. Lee DL; Hodges RS Biopolymers; 2003; 71(1):28-48. PubMed ID: 12712499 [TBL] [Abstract][Full Text] [Related]
20. Sequence requirements and an optimization strategy for short antimicrobial peptides. Hilpert K; Elliott MR; Volkmer-Engert R; Henklein P; Donini O; Zhou Q; Winkler DF; Hancock RE Chem Biol; 2006 Oct; 13(10):1101-7. PubMed ID: 17052614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]