BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16563797)

  • 1. Flavodoxin, a new fluorescent substrate for monitoring proteolytic activity of FtsH lacking a robust unfolding activity.
    Okuno T; Yamanaka K; Ogura T
    J Struct Biol; 2006 Oct; 156(1):115-9. PubMed ID: 16563797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin.
    Okuno T; Yamanaka K; Ogura T
    Genes Cells; 2006 Mar; 11(3):261-8. PubMed ID: 16483314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region.
    Okuno T; Yamanaka K; Ogura T
    J Struct Biol; 2006 Oct; 156(1):109-14. PubMed ID: 16563799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions.
    Cooper KW; Baneyx F
    Protein Expr Purif; 2001 Mar; 21(2):323-32. PubMed ID: 11237695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease.
    Bruckner RC; Gunyuzlu PL; Stein RL
    Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH.
    Okuno T; Yamada-Inagawa T; Karata K; Yamanaka K; Ogura T
    J Struct Biol; 2004; 146(1-2):148-54. PubMed ID: 15037246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease.
    Führer F; Müller A; Baumann H; Langklotz S; Kutscher B; Narberhaus F
    J Mol Biol; 2007 Sep; 372(2):485-96. PubMed ID: 17651755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FtsH cleavage of non-native conformations of proteins.
    Ayuso-Tejedor S; Nishikori S; Okuno T; Ogura T; Sancho J
    J Struct Biol; 2010 Aug; 171(2):117-24. PubMed ID: 20457259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli.
    Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB
    J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro.
    Srinivasan R; Rajeswari H; Ajitkumar P
    Microbiol Res; 2008; 163(1):21-30. PubMed ID: 16638632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents.
    Narberhaus F; Obrist M; Führer F; Langklotz S
    Res Microbiol; 2009 Nov; 160(9):652-9. PubMed ID: 19744556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No cofactor effect on equilibrium unfolding of Desulfovibrio desulfuricans flavodoxin.
    Apiyo D; Guidry J; Wittung-Stafshede P
    Biochim Biophys Acta; 2000 Jun; 1479(1-2):214-24. PubMed ID: 10862971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial cell division protein FtsZ is stable against degradation by AAA family protease FtsH in Escherichia coli cells.
    Srinivasan R; Ajitkumar P
    J Basic Microbiol; 2007 Jun; 47(3):251-9. PubMed ID: 17518418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials.
    Lostao A; Gómez-Moreno C; Mayhew SG; Sancho J
    Biochemistry; 1997 Nov; 36(47):14334-44. PubMed ID: 9398151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI.
    Lawson RJ; von Wachenfeldt C; Haq I; Perkins J; Munro AW
    Biochemistry; 2004 Oct; 43(39):12390-409. PubMed ID: 15449930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal unfolding of Apo and Holo Desulfovibrio desulfuricans flavodoxin: cofactor stabilizes folded and intermediate states.
    Muralidhara BK; Wittung-Stafshede P
    Biochemistry; 2004 Oct; 43(40):12855-64. PubMed ID: 15461458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GTP/GDP binding stabilizes bacterial cell division protein FtsZ against degradation by FtsH protease in vitro.
    Srinivasan R; Rajeswari H; Bhatt BN; Indi S; Ajitkumar P
    Biochem Biophys Res Commun; 2007 May; 357(1):38-43. PubMed ID: 17408592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease.
    Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F
    FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants.
    O'Farrell PA; Walsh MA; McCarthy AA; Higgins TM; Voordouw G; Mayhew SG
    Biochemistry; 1998 Jun; 37(23):8405-16. PubMed ID: 9622492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.