These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 16563799)
1. Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region. Okuno T; Yamanaka K; Ogura T J Struct Biol; 2006 Oct; 156(1):109-14. PubMed ID: 16563799 [TBL] [Abstract][Full Text] [Related]
2. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. Yamada-Inagawa T; Okuno T; Karata K; Yamanaka K; Ogura T J Biol Chem; 2003 Dec; 278(50):50182-7. PubMed ID: 14514680 [TBL] [Abstract][Full Text] [Related]
3. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin. Okuno T; Yamanaka K; Ogura T Genes Cells; 2006 Mar; 11(3):261-8. PubMed ID: 16483314 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850 [TBL] [Abstract][Full Text] [Related]
5. Flavodoxin, a new fluorescent substrate for monitoring proteolytic activity of FtsH lacking a robust unfolding activity. Okuno T; Yamanaka K; Ogura T J Struct Biol; 2006 Oct; 156(1):115-9. PubMed ID: 16563797 [TBL] [Abstract][Full Text] [Related]
6. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease. Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566 [TBL] [Abstract][Full Text] [Related]
7. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease. Bruckner RC; Gunyuzlu PL; Stein RL Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509 [TBL] [Abstract][Full Text] [Related]
8. From the common molecular basis of the AAA protein to various energy-dependent and -independent activities of AAA proteins. Ogura T; Matsushita-Ishiodori Y; Johjima A; Nishizono M; Nishikori S; Esaki M; Yamanaka K Biochem Soc Trans; 2008 Feb; 36(Pt 1):68-71. PubMed ID: 18208388 [TBL] [Abstract][Full Text] [Related]
9. When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli. Bittner LM; Arends J; Narberhaus F Biol Chem; 2017 May; 398(5-6):625-635. PubMed ID: 28085670 [TBL] [Abstract][Full Text] [Related]
10. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH. Karata K; Inagawa T; Wilkinson AJ; Tatsuta T; Ogura T J Biol Chem; 1999 Sep; 274(37):26225-32. PubMed ID: 10473576 [TBL] [Abstract][Full Text] [Related]
11. Allelic characterization of the leaf-variegated mutation var2 identifies the conserved amino acid residues of FtsH that are important for ATP hydrolysis and proteolysis. Sakamoto W; Miura E; Kaji Y; Okuno T; Nishizono M; Ogura T Plant Mol Biol; 2004 Nov; 56(5):705-16. PubMed ID: 15803409 [TBL] [Abstract][Full Text] [Related]
12. Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement. Graef M; Langer T J Struct Biol; 2006 Oct; 156(1):101-8. PubMed ID: 16527490 [TBL] [Abstract][Full Text] [Related]
13. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Narberhaus F; Obrist M; Führer F; Langklotz S Res Microbiol; 2009 Nov; 160(9):652-9. PubMed ID: 19744556 [TBL] [Abstract][Full Text] [Related]
14. Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease. Führer F; Müller A; Baumann H; Langklotz S; Kutscher B; Narberhaus F J Mol Biol; 2007 Sep; 372(2):485-96. PubMed ID: 17651755 [TBL] [Abstract][Full Text] [Related]
15. Study of the ATP-binding site of helicase IV from Escherichia coli. Dubaele S; Lourdel C; Chène P Biochem Biophys Res Commun; 2006 Mar; 341(3):828-36. PubMed ID: 16442499 [TBL] [Abstract][Full Text] [Related]
16. Structure and function of the bacterial AAA protease FtsH. Langklotz S; Baumann U; Narberhaus F Biochim Biophys Acta; 2012 Jan; 1823(1):40-8. PubMed ID: 21925212 [TBL] [Abstract][Full Text] [Related]
17. Proteolysis mediated by the membrane-integrated ATP-dependent protease FtsH has a unique nonlinear dependence on ATP hydrolysis rates. Yang Y; Gunasekara M; Muhammednazaar S; Li Z; Hong H Protein Sci; 2019 Jul; 28(7):1262-1275. PubMed ID: 31008538 [TBL] [Abstract][Full Text] [Related]
18. Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation. Park E; Lee JW; Yoo HM; Ha BH; An JY; Jeon YJ; Seol JH; Eom SH; Chung CH J Mol Biol; 2013 Aug; 425(16):2940-54. PubMed ID: 23707406 [TBL] [Abstract][Full Text] [Related]
19. Utilization of positional isotope exchange experiments to evaluate reversibility of ATP hydrolysis catalyzed by Escherichia coli Lon protease. Thomas J; Fishovitz J; Lee I Biochem Cell Biol; 2010 Feb; 88(1):119-28. PubMed ID: 20130685 [TBL] [Abstract][Full Text] [Related]
20. [In vitro coupling of ATP hydrolysis to proteolysis of ATP site mutant forms of Lon-proteinase from E.coli]. Mel'nikov EE; Tsirul'nikov KB; Ginodman LM; Rotanova TV Bioorg Khim; 1998 Apr; 24(4):293-9. PubMed ID: 9612572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]