BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1163 related articles for article (PubMed ID: 16564085)

  • 21. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs.
    Dong Y; Feng SS
    Biomaterials; 2005 Oct; 26(30):6068-76. PubMed ID: 15894372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate.
    Mo Y; Lim LY
    J Control Release; 2005 Sep; 107(1):30-42. PubMed ID: 16051391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micelle-like nanoparticles of PLA-PEG-PLA triblock copolymer as chemotherapeutic carrier.
    Venkatraman SS; Jie P; Min F; Freddy BY; Leong-Huat G
    Int J Pharm; 2005 Jul; 298(1):219-32. PubMed ID: 15946811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel.
    Feng SS; Mu L; Win KY; Huang G
    Curr Med Chem; 2004 Feb; 11(4):413-24. PubMed ID: 14965222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticles of star-like copolymer mannitol-functionalized poly(lactide)-vitamin E TPGS for delivery of paclitaxel to prostate cancer cells.
    Wang K; Guo L; Xiong W; Sun L; Zheng Y
    J Biomater Appl; 2014 Sep; 29(3):329-40. PubMed ID: 24621530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs.
    Dong Y; Feng SS
    Biomaterials; 2004 Jun; 25(14):2843-9. PubMed ID: 14962562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy.
    Zhang J; Tao W; Chen Y; Chang D; Wang T; Zhang X; Mei L; Zeng X; Huang L
    J Mater Sci Mater Med; 2015 Apr; 26(4):165. PubMed ID: 25791459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. D-α-tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery.
    Wu Y; Chu Q; Tan S; Zhuang X; Bao Y; Wu T; Zhang Z
    Int J Nanomedicine; 2015; 10():5219-35. PubMed ID: 26316751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.
    Jin C; Bai L; Wu H; Tian F; Guo G
    Biomaterials; 2007 Sep; 28(25):3724-30. PubMed ID: 17509678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel.
    Dong Y; Feng SS
    J Biomed Mater Res A; 2006 Jul; 78(1):12-9. PubMed ID: 16596586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) for controlled delivery of paclitaxel.
    Liu SQ; Tong YW; Yang YY
    Mol Biosyst; 2005 Jul; 1(2):158-65. PubMed ID: 16880979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies.
    Zhao L; Feng SS
    J Pharm Sci; 2010 Aug; 99(8):3552-60. PubMed ID: 20564384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
    Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K
    Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Release of paclitaxel from polylactide-co-glycolide (PLGA) microparticles and discs under irradiation.
    Wang J; Ng CW; Win KY; Shoemakers P; Lee TK; Feng SS; Wang CH
    J Microencapsul; 2003; 20(3):317-27. PubMed ID: 12881113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells.
    Hu Y; Xie J; Tong YW; Wang CH
    J Control Release; 2007 Mar; 118(1):7-17. PubMed ID: 17241684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paclitaxel-Loaded TPGS-b-PCL Nanoparticles: In Vitro Cytotoxicity and Cellular Uptake in MCF-7 and MDA-MB-231 Cells versus mPEG-b-PCL Nanoparticles and Abraxane®.
    Bernabeu E; Gonzalez L; Legaspi MJ; Moretton MA; Chiappetta DA
    J Nanosci Nanotechnol; 2016 Jan; 16(1):160-70. PubMed ID: 27398441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation.
    Danhier F; Lecouturier N; Vroman B; Jérôme C; Marchand-Brynaert J; Feron O; Préat V
    J Control Release; 2009 Jan; 133(1):11-7. PubMed ID: 18950666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paclitaxel nanoparticles for the potential treatment of brain tumors.
    Koziara JM; Lockman PR; Allen DD; Mumper RJ
    J Control Release; 2004 Sep; 99(2):259-69. PubMed ID: 15380635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 59.