These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 16564602)

  • 21. Measurements of groundwater velocity in discrete rock fractures.
    Novakowski K; Bickerton G; Lapcevic P; Voralek J; Ross N
    J Contam Hydrol; 2006 Jan; 82(1-2):44-60. PubMed ID: 16239047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term persistence of a nutrient-starved biofilm in a limestone fracture.
    Castegnier F; Ross N; Chapuis RP; Deschênes L; Samson R
    Water Res; 2006 Mar; 40(5):925-34. PubMed ID: 16494922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP).
    Bryers JD; Drummond F
    Biotechnol Bioeng; 1998 Nov; 60(4):462-73. PubMed ID: 10099452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of the mode of matrix porosity determination on matrix diffusion calculations.
    Ota K; Möri A; Alexander WR; Frieg B; Schild M
    J Contam Hydrol; 2003 Mar; 61(1-4):131-45. PubMed ID: 12598100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofilm in combined sewers: wet weather pollution source and/or dry weather pollution indicator?
    Rocher V; Azimi S; Moilleron R; Chebbo G
    Water Sci Technol; 2003; 47(4):35-43. PubMed ID: 12666799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of non-reactive solute transport in fractured clayey till during variable flow rate and time.
    Jørgensen PR; Helstrup T; Urup J; Seifert D
    J Contam Hydrol; 2004 Feb; 68(3-4):193-216. PubMed ID: 14734246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor.
    Zhang S; Splendiani A; dos Santos LM; Livingston AG
    Biotechnol Bioeng; 1998 Jul; 59(1):80-9. PubMed ID: 10099317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steady state model for evaluation of external and internal mass transfer effects in an immobilized biofilm.
    Mudliar S; Banerjee S; Vaidya A; Devotta S
    Bioresour Technol; 2008 Jun; 99(9):3468-74. PubMed ID: 17869505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Description of sorbing tracers transport in fractured media using the lattice model approach.
    Jiménez-Hornero FJ; Giráldez JV; Laguna A
    J Contam Hydrol; 2005 Dec; 81(1-4):187-204. PubMed ID: 16183166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A technique for estimating one-dimensional diffusion coefficients in low-permeability sedimentary rock using X-ray radiography: comparison with through-diffusion measurements.
    Cavé L; Al T; Xiang Y; Vilks P
    J Contam Hydrol; 2009 Jan; 103(1-2):1-12. PubMed ID: 18838191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media.
    Seifert D; Engesgaard P
    J Contam Hydrol; 2007 Aug; 93(1-4):58-71. PubMed ID: 17336422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A technique using a membrane flow cell to determine average mass transfer coefficients and tortuosity factors in biofilms.
    García López LA; Veiga MC; Nogueira R; Aparicio A; Melo LF
    Water Sci Technol; 2003; 47(5):61-7. PubMed ID: 12701908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: modeling and experimental comparison.
    Wang R; Terada A; Lackner S; Smets BF; Henze M; Xia S; Zhao J
    Water Res; 2009 Jun; 43(10):2699-709. PubMed ID: 19375773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plume detachment and recession times in fractured rock.
    West MR; Kueper BH
    Ground Water; 2010; 48(3):416-26. PubMed ID: 20070379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of reduced contaminant loading on downgradient water quality in an idealized two-layer granular porous media.
    Sale TC; Zimbron JA; Dandy DS
    J Contam Hydrol; 2008 Nov; 102(1-2):72-85. PubMed ID: 18930336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of microbial activity on the hydraulic properties of fractured chalk.
    Arnon S; Adar E; Ronen Z; Yakirevich A; Nativ R
    J Contam Hydrol; 2005 Feb; 76(3-4):315-36. PubMed ID: 15683886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.
    Mukhopadhyay S; Liu HH; Spycher N; Kennedy BM
    J Contam Hydrol; 2013 Nov; 154():42-52. PubMed ID: 24077359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana.
    Huguet L; Castelle S; Schäfer J; Blanc G; Maury-Brachet R; Reynouard C; Jorand F
    Sci Total Environ; 2010 Feb; 408(6):1338-48. PubMed ID: 19914680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the disturbance caused by an industrial discharge using field transfer of epipelic biofilm.
    Victoria SM; Gómez N
    Sci Total Environ; 2010 Jun; 408(13):2696-705. PubMed ID: 20385404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.