BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 16564716)

  • 21. Juvenile hormone esterase activity in the pupating and diapausing larvae of Sesamia nonagrioides.
    Schafellner C; Eizaguirre M; López C; Sehnal F
    J Insect Physiol; 2008 Jun; 54(6):916-21. PubMed ID: 18519138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mathematical model for the regulation of juvenile hormone titers.
    Nijhout HF; Reed MC
    J Insect Physiol; 2008 Jan; 54(1):255-64. PubMed ID: 18022634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of temperature and wing morphology on quantitative genetic variation in the cricket Gryllus firmus, with an appendix examining the statistical properties of the Jackknife-MANOVA method of matrix comparison.
    Bégin M; Roff DA; Debat V
    J Evol Biol; 2004 Nov; 17(6):1255-67. PubMed ID: 15525410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata.
    Sin YW; Kenny NJ; Qu Z; Chan KW; Chan KW; Cheong SP; Leung RW; Chan TF; Bendena WG; Chu KH; Tobe SS; Hui JH
    Gen Comp Endocrinol; 2015 Apr; 214():167-76. PubMed ID: 25101838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ecdysteroid agonist RH-2485 reveal interactions between ecdysteroids and juvenile hormones in the development of Sesamia nonagrioides.
    Eizaguirre M; López C; Schafellner C; Sehnal F
    Arch Insect Biochem Physiol; 2007 Jun; 65(2):74-84. PubMed ID: 17523170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ecdysteroid and juvenile hormone biosynthesis, receptors and their signaling in the freshwater microcrustacean Daphnia.
    Miyakawa H; Sato T; Song Y; Tollefsen KE; Iguchi T
    J Steroid Biochem Mol Biol; 2018 Nov; 184():62-68. PubMed ID: 29247785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variations in fuel use in the flight muscles of wing-dimorphic Gryllus firmus and implications for morph-specific dispersal.
    Zhang BC; Jiang CJ; An CJ; Zhang QW; Zhao ZW
    Environ Entomol; 2011 Dec; 40(6):1566-71. PubMed ID: 22217774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions.
    Zera AJ
    Integr Comp Biol; 2003 Nov; 43(5):607-16. PubMed ID: 21680470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical basis of specialization for dispersal vs. reproduction in a wing-polymorphic cricket: morph-specific metabolism of amino acids.
    Zhao Z; Zera AJ
    J Insect Physiol; 2006 Jun; 52(6):646-58. PubMed ID: 16643945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the importance of genotypic variation, metabolic rate, morphology, sex and development time on immune function in the cricket, Gryllus firmus.
    Rantala MJ; Roff DA
    J Evol Biol; 2006 May; 19(3):834-43. PubMed ID: 16674580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [From population genetics to population genomics of forest trees: integrated population genomics approach].
    Krutovskiĭ KV
    Genetika; 2006 Oct; 42(10):1304-18. PubMed ID: 17152702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the NMDA receptor antagonist MK-801 on female reproduction and juvenile hormone biosynthesis in the cricket Gryllus bimaculatus and the butterfly Bicyclus anynana.
    Geister TL; Lorenz MW; Hoffmann KH; Fischer K
    J Exp Biol; 2008 May; 211(Pt 10):1587-93. PubMed ID: 18456886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history.
    Flatt T; Tu MP; Tatar M
    Bioessays; 2005 Oct; 27(10):999-1010. PubMed ID: 16163709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The common quantitative genetic basis of wing morphology and diapause occurrence in the cricket Gryllus veletis.
    Bégin M; Roff DA
    Heredity (Edinb); 2002 Dec; 89(6):473-9. PubMed ID: 12466991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary endocrinology of juvenile hormone esterase in Gryllus assimilis: direct and correlated responses to selection.
    Zera AJ; Zhang C
    Genetics; 1995 Nov; 141(3):1125-34. PubMed ID: 8582618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular evidence of a peripatric origin for two sympatric species of field crickets (Gryllus rubens and G. texensis) revealed from coalescent simulations and population genetic tests.
    Gray DA; Huang H; Knowles LL
    Mol Ecol; 2008 Sep; 17(17):3836-55. PubMed ID: 18647239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of the ecdysteroid-induced cell death by juvenile hormone during pupal wing development of Lepidoptera.
    Lobbia S; Futahashi R; Fujiwara H
    Arch Insect Biochem Physiol; 2007 Jul; 65(3):152-63. PubMed ID: 17570139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Only one esterase of Drosophila melanogaster is likely to degrade juvenile hormone in vivo.
    Crone EJ; Sutherland TD; Campbell PM; Coppin CW; Russell RJ; Oakeshott JG
    Insect Biochem Mol Biol; 2007 Jun; 37(6):540-9. PubMed ID: 17517331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian rhythms and endocrine functions in adult insects.
    Bloch G; Hazan E; Rafaeli A
    J Insect Physiol; 2013 Jan; 59(1):56-69. PubMed ID: 23103982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Juvenile hormone titer and morph-specific reproduction in the wing-polymorphic cricket, Gryllus firmus.
    Cisper G; Zera AJ; Borst DW
    J Insect Physiol; 2000 Apr; 46(4):585-596. PubMed ID: 12770222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.