These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 16564808)
1. Optical coherence tomography of enucleated human eye specimens with histological correlation: origin of the outer "red line". Ghazi NG; Dibernardo C; Ying HS; Mori K; Gehlbach PL Am J Ophthalmol; 2006 Apr; 141(4):719-26. PubMed ID: 16564808 [TBL] [Abstract][Full Text] [Related]
2. Optical coherence tomography of peripheral retinal lesions in enucleated human eye specimens with histologic correlation. Ghazi NG; Dibernardo C; Ying H; Mori K; Gehlbach PL Am J Ophthalmol; 2006 Apr; 141(4):740-2. PubMed ID: 16564813 [TBL] [Abstract][Full Text] [Related]
3. Redefining the limit of the outer retina in optical coherence tomography scans. Pons ME; Garcia-Valenzuela E Ophthalmology; 2005 Jun; 112(6):1079-85. PubMed ID: 15882904 [TBL] [Abstract][Full Text] [Related]
4. Improved visualization of polypoidal choroidal vasculopathy lesions using spectral-domain optical coherence tomography. Ojima Y; Hangai M; Sakamoto A; Tsujikawa A; Otani A; Tamura H; Yoshimura N Retina; 2009 Jan; 29(1):52-9. PubMed ID: 18827738 [TBL] [Abstract][Full Text] [Related]
5. A clinical and optical coherence tomography study of the margins of choroidal colobomas. Gopal L; Khan B; Jain S; Prakash VS Ophthalmology; 2007 Mar; 114(3):571-80. PubMed ID: 17123621 [TBL] [Abstract][Full Text] [Related]
6. Optical coherence tomography of peripheral retinal lesions in enucleated human eye specimens with histologic correlation II. Ghazi NG; Knape RM Curr Eye Res; 2006 Dec; 31(12):1047-9. PubMed ID: 17169843 [TBL] [Abstract][Full Text] [Related]
7. Relationship of the optical coherence tomography signal to underlying retinal histology in the tree shrew (Tupaia belangeri). Abbott CJ; McBrien NA; Grünert U; Pianta MJ Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):414-23. PubMed ID: 18708623 [TBL] [Abstract][Full Text] [Related]
8. Autologous transplantation of retinal pigment epithelium-Bruch's membrane complex for hemorrhagic age-related macular degeneration. Ma Z; Han L; Wang C; Dou H; Hu Y; Feng X; Xu Y; Wang Z; Yin Z; Liu Y Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2975-81. PubMed ID: 19117919 [TBL] [Abstract][Full Text] [Related]
9. Histologic correlation of in vivo optical coherence tomography images of the human retina. Chen TC; Cense B; Miller JW; Rubin PA; Deschler DG; Gragoudas ES; de Boer JF Am J Ophthalmol; 2006 Jun; 141(6):1165-8. PubMed ID: 16765704 [TBL] [Abstract][Full Text] [Related]
11. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Margolis R; Spaide RF Am J Ophthalmol; 2009 May; 147(5):811-5. PubMed ID: 19232559 [TBL] [Abstract][Full Text] [Related]
12. Optical coherence tomography on autologous translocation of choroid and retinal pigment epithelium in age-related macular degeneration. Joeres S; Llacer H; Heussen FM; Weiss C; Kirchhof B; Joussen AM Eye (Lond); 2008 Jun; 22(6):782-9. PubMed ID: 17332766 [TBL] [Abstract][Full Text] [Related]
13. Sveinsson chorioretinal atrophy: the mildest changes are located in the photoreceptor outer segment/retinal pigment epithelium junction. Jonasson F; Sander B; Eysteinsson T; Jörgensen T; Klintworth GK Acta Ophthalmol Scand; 2007 Dec; 85(8):862-7. PubMed ID: 17683515 [TBL] [Abstract][Full Text] [Related]
14. Quantitative thickness measurement of retinal layers imaged by optical coherence tomography. Shahidi M; Wang Z; Zelkha R Am J Ophthalmol; 2005 Jun; 139(6):1056-61. PubMed ID: 15953436 [TBL] [Abstract][Full Text] [Related]
15. Cross-sectional and en face optical coherence tomographic features of polypoidal choroidal vasculopathy. Saito M; Iida T; Nagayama D Retina; 2008 Mar; 28(3):459-64. PubMed ID: 18327139 [TBL] [Abstract][Full Text] [Related]
16. Capillaries are present in Bruch's membrane at the ora serrata in the human eye. Schraermeyer U; Addicks K; Kociok N; Esser P; Heimann K Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1076-84. PubMed ID: 9620066 [TBL] [Abstract][Full Text] [Related]
17. Multimodal imaging including spectral domain OCT and confocal near infrared reflectance for characterization of outer retinal pathology in pseudoxanthoma elasticum. Charbel Issa P; Finger RP; Holz FG; Scholl HP Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5913-8. PubMed ID: 19553619 [TBL] [Abstract][Full Text] [Related]
18. Photoreceptor loss overlying congenital hypertrophy of the retinal pigment epithelium by optical coherence tomography. Shields CL; Materin MA; Walker C; Marr BP; Shields JA Ophthalmology; 2006 Apr; 113(4):661-5. PubMed ID: 16581426 [TBL] [Abstract][Full Text] [Related]
19. Lipids of human retina, retinal pigment epithelium, and Bruch's membrane/choroid: comparison of macular and peripheral regions. Gülcan HG; Alvarez RA; Maude MB; Anderson RE Invest Ophthalmol Vis Sci; 1993 Oct; 34(11):3187-93. PubMed ID: 8407228 [TBL] [Abstract][Full Text] [Related]
20. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]