These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1656503)

  • 1. Glycine receptor-mediated fast synaptic inhibition in the brainstem respiratory system.
    Schmid K; Böhmer G; Gebauer K
    Respir Physiol; 1991 Jun; 84(3):351-61. PubMed ID: 1656503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABAA receptor mediated fast synaptic inhibition in the rabbit brain-stem respiratory system.
    Schmid K; Böhmer G; Gebauer K
    Acta Physiol Scand; 1991 Jul; 142(3):411-20. PubMed ID: 1656705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse.
    Paton JF; Richter DW
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganisation of respiratory network activity after loss of glycinergic inhibition.
    Büsselberg D; Bischoff AM; Paton JF; Richter DW
    Pflugers Arch; 2001 Jan; 441(4):444-9. PubMed ID: 11212206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat.
    Dutschmann M; Paton JF
    J Physiol; 2002 Sep; 543(Pt 2):643-53. PubMed ID: 12205196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAAergic and glycinergic inhibition in the phrenic nucleus organizes and couples fast oscillations in motor output.
    Marchenko V; Rogers RF
    J Neurophysiol; 2009 Apr; 101(4):2134-45. PubMed ID: 19225173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control.
    Bongianni F; Mutolo D; Nardone F; Pantaleo T
    Brain Res; 2006 May; 1090(1):134-45. PubMed ID: 16630584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of glycine and strychnine microinjected into unilateral and bilateral Bötzinger complex on phrenic nerve discharges in rabbits].
    Lü M; Li Q; Song G; Zhang H; Liu L
    Sheng Li Xue Bao; 1998 Dec; 50(6):693-7. PubMed ID: 11367684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of synaptic inhibition within the pre-Bötzinger complex in the cat suppresses respiratory rhythm generation in vivo.
    Pierrefiche O; Schwarzacher SW; Bischoff AM; Richter DW
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):245-54. PubMed ID: 9547397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of fast synaptic inhibition in the generation of high-frequency oscillation in central respiratory system.
    Schmid K; Böhmer G
    Brain Res; 1989 Apr; 485(1):193-8. PubMed ID: 2720401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pontine-evoked inspiratory inhibitions after antagonism of NMDA, GABAA, or glycine receptor.
    Ling L; Karius DR; Speck DF
    J Appl Physiol (1985); 1993 Mar; 74(3):1265-73. PubMed ID: 8387072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
    Iizuka M
    J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bulbar network of respiratory neurons during apneusis induced by a blockade of NMDA receptors.
    Pierrefiche O; Foutz AS; Champagnat J; Denavit-Saubié M
    Exp Brain Res; 1992; 89(3):623-39. PubMed ID: 1386575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of synaptic inhibition in turtle respiratory rhythm generation.
    Johnson SM; Wilkerson JE; Wenninger MR; Henderson DR; Mitchell GS
    J Physiol; 2002 Oct; 544(Pt 1):253-65. PubMed ID: 12356896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined blockade of glycine and calcium-dependent potassium channels abolishes the respiratory rhythm.
    Büsselberg D; Bischoff AM; Richter DW
    Neuroscience; 2003; 122(3):831-41. PubMed ID: 14622925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of inhibitory amino acids in control of respiratory motor output in an arterially perfused rat.
    Hayashi F; Lipski J
    Respir Physiol; 1992 Jul; 89(1):47-63. PubMed ID: 1325666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory rhythm generation and pattern formation: oscillators and network mechanisms.
    Ghali MGZ
    J Integr Neurosci; 2019 Dec; 18(4):481-517. PubMed ID: 31912709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medullary lateral tegmental field neurons influence the timing and pattern of phrenic nerve activity in cats.
    Orer HS; Gebber GL; Barman SM
    J Appl Physiol (1985); 2006 Aug; 101(2):521-30. PubMed ID: 16645195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of protein kinase A activity depresses phrenic drive and glycinergic signalling, but not rhythmogenesis in anaesthetized rat.
    Burke PG; Sousa LO; Tallapragada VJ; Goodchild AK
    Eur J Neurosci; 2013 Jul; 38(2):2260-70. PubMed ID: 23627348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic inhibition in the isolated respiratory network of neonatal rats.
    Brockhaus J; Ballanyi K
    Eur J Neurosci; 1998 Dec; 10(12):3823-39. PubMed ID: 9875360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.