BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16565048)

  • 1. Uncoupling store-operated Ca2+ entry and altered Ca2+ release from sarcoplasmic reticulum through silencing of junctophilin genes.
    Hirata Y; Brotto M; Weisleder N; Chu Y; Lin P; Zhao X; Thornton A; Komazaki S; Takeshima H; Ma J; Pan Z
    Biophys J; 2006 Jun; 90(12):4418-27. PubMed ID: 16565048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle.
    Woo JS; Hwang JH; Ko JK; Weisleder N; Kim DH; Ma J; Lee EH
    Biochem J; 2010 Mar; 427(1):125-34. PubMed ID: 20095964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1.
    Ito K; Komazaki S; Sasamoto K; Yoshida M; Nishi M; Kitamura K; Takeshima H
    J Cell Biol; 2001 Sep; 154(5):1059-67. PubMed ID: 11535622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated Ca2+ entry via Orai1.
    Woo JS; Cho CH; Lee KJ; Kim DH; Ma J; Lee EH
    J Biol Chem; 2012 Apr; 287(18):14336-48. PubMed ID: 22389502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical interaction of junctophilin and the Ca
    Nakada T; Kashihara T; Komatsu M; Kojima K; Takeshita T; Yamada M
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4507-4512. PubMed ID: 29632175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired Orai1-mediated resting Ca2+ entry reduces the cytosolic [Ca2+] and sarcoplasmic reticulum Ca2+ loading in quiescent junctophilin 1 knock-out myotubes.
    Li H; Ding X; Lopez JR; Takeshima H; Ma J; Allen PD; Eltit JM
    J Biol Chem; 2010 Dec; 285(50):39171-9. PubMed ID: 20937810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A possible role of the junctional face protein JP-45 in modulating Ca2+ release in skeletal muscle.
    Gouadon E; Schuhmeier RP; Ursu D; Anderson AA; Treves S; Zorzato F; Lehmann-Horn F; Melzer W
    J Physiol; 2006 Apr; 572(Pt 1):269-80. PubMed ID: 16423849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres.
    Woods CE; Novo D; DiFranco M; Capote J; Vergara JL
    J Physiol; 2005 Nov; 568(Pt 3):867-80. PubMed ID: 16123111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ca2+, membrane excitability, and Ca2+ stores in failing muscle contraction with aging.
    Payne AM; Jimenez-Moreno R; Wang ZM; Messi ML; Delbono O
    Exp Gerontol; 2009 Apr; 44(4):261-73. PubMed ID: 18948183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Excitation-contraction coupling and junctional membrane structures.].
    Takei D; Takeshima H
    Clin Calcium; 2017; 27(3):333-338. PubMed ID: 28232646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective maintenance of intracellular Ca2+ homeostasis is linked to increased muscle fatigability in the MG29 null mice.
    Brotto MA; Nagaraj RY; Brotto LS; Takeshima H; Ma JJ; Nosek TM
    Cell Res; 2004 Oct; 14(5):373-8. PubMed ID: 15538969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-dependent facilitation and graded deactivation of store-operated calcium entry in fetal skeletal muscle.
    Collet C; Ma J
    Biophys J; 2004 Jul; 87(1):268-75. PubMed ID: 15240463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy.
    Weisleder N; Ma JJ
    Acta Pharmacol Sin; 2006 Jul; 27(7):791-8. PubMed ID: 16787561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular architecture of Ca2+ signaling control in muscle and heart cells.
    Zhao X; Yamazaki D; Kakizawa S; Pan Z; Takeshima H; Ma J
    Channels (Austin); 2011; 5(5):391-6. PubMed ID: 21712647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle.
    Murphy RM; Dutka TL; Horvath D; Bell JR; Delbridge LM; Lamb GD
    J Physiol; 2013 Feb; 591(3):719-29. PubMed ID: 23148318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcoplasmic reticulum function and contractile consequences in ureteric smooth muscles.
    Burdyga T; Wray S
    Novartis Found Symp; 2002; 246():208-17; discussion 217-20, 221-7. PubMed ID: 12164310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Junctophilin 1 and 2 proteins interact with the L-type Ca2+ channel dihydropyridine receptors (DHPRs) in skeletal muscle.
    Golini L; Chouabe C; Berthier C; Cusimano V; Fornaro M; Bonvallet R; Formoso L; Giacomello E; Jacquemond V; Sorrentino V
    J Biol Chem; 2011 Dec; 286(51):43717-43725. PubMed ID: 22020936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered expression of triadin 95 causes parallel changes in localized Ca2+ release events and global Ca2+ signals in skeletal muscle cells in culture.
    Fodor J; Gönczi M; Sztretye M; Dienes B; Oláh T; Szabó L; Csoma E; Szentesi P; Szigeti GP; Marty I; Csernoch L
    J Physiol; 2008 Dec; 586(23):5803-18. PubMed ID: 18845610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice.
    Jiménez-Moreno R; Wang ZM; Gerring RC; Delbono O
    Biophys J; 2008 Apr; 94(8):3178-88. PubMed ID: 18178643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle.
    Szentesi P; Pignier C; Egger M; Kranias EG; Niggli E
    Circ Res; 2004 Oct; 95(8):807-13. PubMed ID: 15388639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.