BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 1656509)

  • 21. Red blood cells do not contribute to removal of K+ released from exhaustively working forearm muscle.
    Maassen N; Foerster M; Mairbäurl H
    J Appl Physiol (1985); 1998 Jul; 85(1):326-32. PubMed ID: 9655793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+.
    de Paoli FV; Overgaard K; Pedersen TH; Nielsen OB
    J Physiol; 2007 Jun; 581(Pt 2):829-39. PubMed ID: 17347268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of potassium in the regulation of systemic physiological function during exercise.
    Paterson DJ
    Acta Physiol Scand; 1996 Mar; 156(3):287-94. PubMed ID: 8729689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion gradients and contractility in skeletal muscle: the role of active Na+, K+ transport.
    Nielsen OB; Overgaard K
    Acta Physiol Scand; 1996 Mar; 156(3):247-56. PubMed ID: 8729684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle Na,K-pump dysfunction may expose the heart to dangerous K levels during exercise.
    Kjeldsen K
    Can J Sport Sci; 1991 Mar; 16(1):33-9. PubMed ID: 1645213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Apparent upregulation of Na+,K+ pump sites in SHR skeletal muscle with reduced transport capacity.
    Pickar JG; Atrakchi A; Gray SD; Carlsen RC
    Clin Exp Hypertens A; 1991; 13(5):645-52. PubMed ID: 1663434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Na+-K+ pump stimulation restores carbacholine-induced loss of excitability and contractility in rat skeletal muscle.
    Macdonald WA; Nielsen OB; Clausen T
    J Physiol; 2005 Mar; 563(Pt 2):459-69. PubMed ID: 15649983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise.
    Sostaric SM; Skinner SL; Brown MJ; Sangkabutra T; Medved I; Medley T; Selig SE; Fairweather I; Rutar D; McKenna MJ
    J Physiol; 2006 Jan; 570(Pt 1):185-205. PubMed ID: 16239279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T; Gissel H
    Acta Physiol Scand; 2005 Mar; 183(3):263-71. PubMed ID: 15743386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Na+, K+ pump in skeletal muscle: quantification, regulation and functional significance.
    Clausen T
    Acta Physiol Scand; 1996 Mar; 156(3):227-35. PubMed ID: 8729682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potassium, Na+,K+-pumps and fatigue in rat muscle.
    Clausen T; Nielsen OB
    J Physiol; 2007 Oct; 584(Pt 1):295-304. PubMed ID: 17673509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. K+ balance in humans during exercise.
    Hallén J
    Acta Physiol Scand; 1996 Mar; 156(3):279-86. PubMed ID: 8729688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Na+/K(+)-pump protects muscle excitability and contractility during exercise.
    Nielsen OB; Clausen T
    Exerc Sport Sci Rev; 2000 Oct; 28(4):159-64. PubMed ID: 11064849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clearance of extracellular K+ during muscle contraction--roles of membrane transport and diffusion.
    Clausen T
    J Gen Physiol; 2008 May; 131(5):473-81. PubMed ID: 18411333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adrenaline causes potassium influx in skeletal muscle and potassium efflux in cardiac muscle in rats: the role of Na/K ATPase.
    Struthers AD; Davies DL; Harland D; Price JS; Brown RA; Quigley C; Brown MJ
    Life Sci; 1987 Jan; 40(1):101-8. PubMed ID: 3025540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat skeletal muscles.
    Broch-Lips M; Overgaard K; Praetorius HA; Nielsen OB
    J Appl Physiol (1985); 2007 Aug; 103(2):494-503. PubMed ID: 17446415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical and therapeutic significance of the Na+,K+ pump*.
    Clausen T
    Clin Sci (Lond); 1998 Jul; 95(1):3-17. PubMed ID: 9662481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake.
    Leppik JA; Aughey RJ; Medved I; Fairweather I; Carey MF; McKenna MJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1414-23. PubMed ID: 15155714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat.
    Broch-Lips M; de Paoli F; Pedersen TH; Overgaard K; Nielsen OB
    J Appl Physiol (1985); 2011 Jul; 111(1):212-20. PubMed ID: 21551010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.