BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16565350)

  • 1. Porcine cardiac myocyte power output is increased after chronic exercise training.
    Hinken AC; Korte FS; McDonald KS
    J Appl Physiol (1985); 2006 Jul; 101(1):40-6. PubMed ID: 16565350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered single cell force-velocity and power properties in exercise-trained rat myocardium.
    Diffee GM; Chung E
    J Appl Physiol (1985); 2003 May; 94(5):1941-8. PubMed ID: 12524379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca²⁺ sensitization of cardiac myofilament proteins contributes to exercise training-enhanced myocardial function in a porcine model of chronic occlusion.
    Sarin V; Muthuchamy M; Heaps CL
    Am J Physiol Heart Circ Physiol; 2011 Oct; 301(4):H1579-87. PubMed ID: 21856915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional differences in effects of exercise training on contractile and biochemical properties of rat cardiac myocytes.
    Diffee GM; Nagle DF
    J Appl Physiol (1985); 2003 Jul; 95(1):35-42. PubMed ID: 12547843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise training alters length dependence of contractile properties in rat myocardium.
    Diffee GM; Nagle DF
    J Appl Physiol (1985); 2003 Mar; 94(3):1137-44. PubMed ID: 12391046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes.
    Herron TJ; Korte FS; McDonald KS
    Circ Res; 2001 Dec; 89(12):1184-90. PubMed ID: 11739284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of exercise-trained porcine myocardium.
    Laughlin MH; Hale CC; Novela L; Gute D; Hamilton N; Ianuzzo CD
    J Appl Physiol (1985); 1991 Jul; 71(1):229-35. PubMed ID: 1833367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C.
    Korte FS; McDonald KS; Harris SP; Moss RL
    Circ Res; 2003 Oct; 93(8):752-8. PubMed ID: 14500336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers.
    Malisoux L; Francaux M; Nielens H; Theisen D
    J Appl Physiol (1985); 2006 Mar; 100(3):771-9. PubMed ID: 16322375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of high-altitude exercise training on contractile function of rat skinned cardiomyocyte.
    Cazorla O; Aït Mou Y; Goret L; Vassort G; Dauzat M; Lacampagne A; Tanguy S; Obert P
    Cardiovasc Res; 2006 Sep; 71(4):652-60. PubMed ID: 16860293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcomere length dependence of power output is increased after PKA treatment in rat cardiac myocytes.
    Hanft LM; McDonald KS
    Am J Physiol Heart Circ Physiol; 2009 May; 296(5):H1524-31. PubMed ID: 19252095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise training increases the Ca(2+) sensitivity of tension in rat cardiac myocytes.
    Diffee GM; Seversen EA; Titus MM
    J Appl Physiol (1985); 2001 Jul; 91(1):309-15. PubMed ID: 11408445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise improves impaired ventricular function and alterations of cardiac myofibrillar proteins in diabetic dyslipidemic pigs.
    Korte FS; Mokelke EA; Sturek M; McDonald KS
    J Appl Physiol (1985); 2005 Feb; 98(2):461-7. PubMed ID: 15465890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sprint training on contractility and [Ca(2+)](i) transients in adult rat myocytes.
    Zhang XQ; Song J; Carl LL; Shi W; Qureshi A; Tian Q; Cheung JY
    J Appl Physiol (1985); 2002 Oct; 93(4):1310-7. PubMed ID: 12235030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic exercise alters contractility and morphology of isolated rat cardiac myocytes.
    Moore RL; Musch TI; Yelamarty RV; Scaduto RC; Semanchick AM; Elensky M; Cheung JY
    Am J Physiol; 1993 May; 264(5 Pt 1):C1180-9. PubMed ID: 8498479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of exercise training on contractile function in myocardial trabeculae after ischemia-reperfusion.
    Hwang H; Reiser PJ; Billman GE
    J Appl Physiol (1985); 2005 Jul; 99(1):230-6. PubMed ID: 15774705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of cardiac myocyte contractile properties to exercise training.
    Diffee GM
    Exerc Sport Sci Rev; 2004 Jul; 32(3):112-9. PubMed ID: 15243207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased muscle ACE activity enhances functional response to endurance training in rats, without change in muscle oxidative capacity or contractile phenotype.
    Habouzit E; Richard H; Sanchez H; Koulmann N; Serrurier B; Monnet R; Ventura-Clapier R; Bigard X
    J Appl Physiol (1985); 2009 Jul; 107(1):346-53. PubMed ID: 19407247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Regulation of cardiac output;an approximation at 3 levels: organic, cellular, and protein].
    Martíenz Caro D; Rodríguez García JA; Munguía L
    Rev Med Univ Navarra; 1999; 43(1):29-40. PubMed ID: 10386344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.