These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 16565805)

  • 1. Airborne dust particle counting techniques.
    Sharma SG; Prasad BD
    Environ Monit Assess; 2006 Mar; 114(1-3):191-8. PubMed ID: 16565805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New measurement principle and basic performance of high-sensitivity turbidimeter with two optical systems in series.
    Ebie K; Yamaguchi D; Hoshikawa H; Shirozu T
    Water Res; 2006 Feb; 40(4):683-91. PubMed ID: 16476466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of optical scatter sensors for measurement of visibility.
    Tjugum SA; Vaagen JS; Jakobsen T; Hamre B
    J Environ Monit; 2005 Jun; 7(6):608-11. PubMed ID: 15931423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the recursive model approach for estimating particulate matter infiltration efficiencies using continuous light scattering data.
    Allen R; Wallace L; Larson T; Sheppard L; Liu LJ
    J Expo Sci Environ Epidemiol; 2007 Aug; 17(5):468-77. PubMed ID: 17108894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-scattering features of turbidity-causing particles in interconnected reservoir basins and a connecting stream.
    Peng F; Effler SW; Pierson DC; Smith DG
    Water Res; 2009 May; 43(8):2280-92. PubMed ID: 19278710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on the measurement of the atmospheric extinction of fog and rain by forward-scattering near infrared spectroscopy].
    Wang M; Liu WQ; Lu YH; Zhao XS; Song BC; Zhang YJ; Wang YP; Lian CH; Chen J; Cheng Y; Liu JG; Wei QN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1776-80. PubMed ID: 18975801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance assessment of a portable nephelometer for outdoor particle mass measurement.
    Wang Z; Wang D; Peng ZR; Cai M; Fu Q; Wang D
    Environ Sci Process Impacts; 2018 Feb; 20(2):370-383. PubMed ID: 29250634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaped focal plane detectors for particle concentration and mean size observations.
    Agrawal YC; Mikkelsen OA
    Opt Express; 2009 Dec; 17(25):23066-77. PubMed ID: 20052233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a portable nephelometer against the Tapered Element Oscillating Microbalance method for monitoring PM(2.5).
    Karagulian F; Belis CA; Lagler F; Barbiere M; Gerboles M
    J Environ Monit; 2012 Aug; 14(8):2145-53. PubMed ID: 22766850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust.
    Thorpe A
    Ann Occup Hyg; 2007 Jan; 51(1):97-112. PubMed ID: 16799158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle characterization by using tilted laser microscopy: back scattering measurement in near field.
    Brogioli D; Salerno D; Cassina V; Mantegazza F
    Opt Express; 2009 Aug; 17(18):15431-48. PubMed ID: 19724541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk factors for particulate and microbial contamination of air in operating theatres.
    Scaltriti S; Cencetti S; Rovesti S; Marchesi I; Bargellini A; Borella P
    J Hosp Infect; 2007 Aug; 66(4):320-6. PubMed ID: 17655973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM
    Tryner J; Good N; Wilson A; Clark ML; Peel JL; Volckens J
    Environ Pollut; 2019 Jul; 250():251-261. PubMed ID: 30999202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of indoor fine aerosol contributions from environmental tobacco smoke and cooking with a portable nephelometer.
    Brauer M; Hirtle R; Lang B; Ott W
    J Expo Anal Environ Epidemiol; 2000; 10(2):136-44. PubMed ID: 10791595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response characteristics of scattered light aerosol sensors used for control monitoring.
    Smith JP; Baron PA; Murdock DJ
    Am Ind Hyg Assoc J; 1987 Mar; 48(3):219-29. PubMed ID: 3578033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering.
    Soos M; Lattuada M; Sefcik J
    J Phys Chem B; 2009 Nov; 113(45):14962-70. PubMed ID: 19845324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles.
    Peters TM; Ott D; O'Shaughnessy PT
    Ann Occup Hyg; 2006 Nov; 50(8):843-50. PubMed ID: 17041244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: experimental observations.
    Jen SH; Gonella G; Dai HL
    J Phys Chem A; 2009 Apr; 113(16):4758-62. PubMed ID: 19278215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rayleigh approximation for the scattering of small partially charged sand particles.
    Li X; Min X; Liu D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1495-501. PubMed ID: 25121437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.