These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 16565951)
21. Optimal HRF and smoothing parameters for fMRI time series within an autoregressive modeling framework. Galka A; Siniatchkin M; Stephani U; Groening K; Wolff S; Bosch-Bayard J; Ozaki T J Integr Neurosci; 2010 Dec; 9(4):429-52. PubMed ID: 21213413 [TBL] [Abstract][Full Text] [Related]
22. Evaluation and comparison of GLM- and CVA-based fMRI processing pipelines with Java-based fMRI processing pipeline evaluation system. Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC Neuroimage; 2008 Jul; 41(4):1242-52. PubMed ID: 18482849 [TBL] [Abstract][Full Text] [Related]
23. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. Strother SC; Anderson J; Hansen LK; Kjems U; Kustra R; Sidtis J; Frutiger S; Muley S; LaConte S; Rottenberg D Neuroimage; 2002 Apr; 15(4):747-71. PubMed ID: 11906218 [TBL] [Abstract][Full Text] [Related]
24. Spatial and temporal joint, partially-joint and individual sources in independent component analysis: Application to social brain fMRI dataset. Pakravan M; Shamsollahi MB J Neurosci Methods; 2020 Jan; 329():108453. PubMed ID: 31644994 [TBL] [Abstract][Full Text] [Related]
25. Predicting brain states associated with object categories from fMRI data. Behroozi M; Daliri MR J Integr Neurosci; 2014 Dec; 13(4):645-67. PubMed ID: 25352153 [TBL] [Abstract][Full Text] [Related]
26. Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions. Lee D; Yun S; Jang C; Park HJ PLoS One; 2017; 12(8):e0182657. PubMed ID: 28777830 [TBL] [Abstract][Full Text] [Related]
27. Grouped sparse Bayesian learning for voxel selection in multivoxel pattern analysis of fMRI data. Wen Z; Yu T; Yu Z; Li Y Neuroimage; 2019 Jan; 184():417-430. PubMed ID: 30240902 [TBL] [Abstract][Full Text] [Related]
28. Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods. Churchill NW; Oder A; Abdi H; Tam F; Lee W; Thomas C; Ween JE; Graham SJ; Strother SC Hum Brain Mapp; 2012 Mar; 33(3):609-27. PubMed ID: 21455942 [TBL] [Abstract][Full Text] [Related]
29. Comparison of detrending methods for optimal fMRI preprocessing. Tanabe J; Miller D; Tregellas J; Freedman R; Meyer FG Neuroimage; 2002 Apr; 15(4):902-7. PubMed ID: 11906230 [TBL] [Abstract][Full Text] [Related]
30. A Hybrid LDA+gCCA Model for fMRI Data Classification and Visualization. Afshin-Pour B; Shams SM; Strother S IEEE Trans Med Imaging; 2015 May; 34(5):1031-41. PubMed ID: 25438304 [TBL] [Abstract][Full Text] [Related]
31. The quantitative evaluation of functional neuroimaging experiments: mutual information learning curves. Kjems U; Hansen LK; Anderson J; Frutiger S; Muley S; Sidtis J; Rottenberg D; Strother SC Neuroimage; 2002 Apr; 15(4):772-86. PubMed ID: 11906219 [TBL] [Abstract][Full Text] [Related]
32. Higher resolution MRI and image modeling for predicting surgical outcome in partial epilepsy. Cendes F Neurology; 2005 Oct; 65(7):975. PubMed ID: 16220587 [No Abstract] [Full Text] [Related]
33. The Relevance Voxel Machine (RVoxM): a Bayesian method for image-based prediction. Sabuncu MR; Van Leemput K Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):99-106. PubMed ID: 22003689 [TBL] [Abstract][Full Text] [Related]
34. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging. Kim HC; Bandettini PA; Lee JH Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076 [TBL] [Abstract][Full Text] [Related]
35. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age. Churchill NW; Raamana P; Spring R; Strother SC Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431 [TBL] [Abstract][Full Text] [Related]
36. Investigating the functional role of callosal connections with dynamic causal models. Stephan KE; Penny WD; Marshall JC; Fink GR; Friston KJ Ann N Y Acad Sci; 2005 Dec; 1064():16-36. PubMed ID: 16394145 [TBL] [Abstract][Full Text] [Related]
37. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets. Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720 [TBL] [Abstract][Full Text] [Related]
38. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. LaConte S; Anderson J; Muley S; Ashe J; Frutiger S; Rehm K; Hansen LK; Yacoub E; Hu X; Rottenberg D; Strother S Neuroimage; 2003 Jan; 18(1):10-27. PubMed ID: 12507440 [TBL] [Abstract][Full Text] [Related]
39. Classifier ensembles for fMRI data analysis: an experiment. Kuncheva LI; Rodríguez JJ Magn Reson Imaging; 2010 May; 28(4):583-93. PubMed ID: 20096528 [TBL] [Abstract][Full Text] [Related]
40. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data. Strappini F; Gilboa E; Pitzalis S; Kay K; McAvoy M; Nehorai A; Snyder AZ Hum Brain Mapp; 2017 Mar; 38(3):1438-1459. PubMed ID: 27943516 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]