These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 16565951)

  • 41. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.
    Mejia AF; Nebel MB; Shou H; Crainiceanu CM; Pekar JJ; Mostofsky S; Caffo B; Lindquist MA
    Neuroimage; 2015 May; 112():14-29. PubMed ID: 25731998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.
    Moerel M; De Martino F; Kemper VG; Schmitter S; Vu AT; Uğurbil K; Formisano E; Yacoub E
    Neuroimage; 2018 Jan; 164():18-31. PubMed ID: 28373123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predicting intrinsic brain activity.
    Craddock RC; Milham MP; LaConte SM
    Neuroimage; 2013 Nov; 82():127-36. PubMed ID: 23707580
    [TBL] [Abstract][Full Text] [Related]  

  • 44. fMRI language task panel improves determination of language dominance.
    Gaillard WD; Balsamo L; Xu B; McKinney C; Papero PH; Weinstein S; Conry J; Pearl PL; Sachs B; Sato S; Vezina LG; Frattali C; Theodore WH
    Neurology; 2004 Oct; 63(8):1403-8. PubMed ID: 15505156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully Bayesian spatio-temporal modeling of FMRI data.
    Woolrich MW; Jenkinson M; Brady JM; Smith SM
    IEEE Trans Med Imaging; 2004 Feb; 23(2):213-31. PubMed ID: 14964566
    [TBL] [Abstract][Full Text] [Related]  

  • 46. fMRI pattern classification using neuroanatomically constrained boosting.
    Martínez-Ramón M; Koltchinskii V; Heileman GL; Posse S
    Neuroimage; 2006 Jul; 31(3):1129-41. PubMed ID: 16529955
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accurate autocorrelation modeling substantially improves fMRI reliability.
    Olszowy W; Aston J; Rua C; Williams GB
    Nat Commun; 2019 Dec; 10(1):1220. PubMed ID: 30899012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection.
    Soch J; Haynes JD; Allefeld C
    Neuroimage; 2016 Nov; 141():469-489. PubMed ID: 27477536
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Support vector machine learning-based fMRI data group analysis.
    Wang Z; Childress AR; Wang J; Detre JA
    Neuroimage; 2007 Jul; 36(4):1139-51. PubMed ID: 17524674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatio-temporal correlations from fMRI time series based on the NN-ARx model.
    Bosch-Bayard J; Riera-Diaz J; Biscay-Lirio R; Wong KF; Galka A; Yamashita O; Sadato N; Kawashima R; Aubert-Vazquez E; Rodriguez-Rojas R; Valdes-Sosa P; Miwakeichi F; Ozaki T
    J Integr Neurosci; 2010 Dec; 9(4):381-406. PubMed ID: 21213411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel method and software for automatically classifying Alzheimer's disease patients by magnetic resonance imaging analysis.
    Previtali F; Bertolazzi P; Felici G; Weitschek E
    Comput Methods Programs Biomed; 2017 May; 143():89-95. PubMed ID: 28391822
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Region of interest based analysis of functional imaging data.
    Nieto-Castanon A; Ghosh SS; Tourville JA; Guenther FH
    Neuroimage; 2003 Aug; 19(4):1303-16. PubMed ID: 12948689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visual inspection of independent components: defining a procedure for artifact removal from fMRI data.
    Kelly RE; Alexopoulos GS; Wang Z; Gunning FM; Murphy CF; Morimoto SS; Kanellopoulos D; Jia Z; Lim KO; Hoptman MJ
    J Neurosci Methods; 2010 Jun; 189(2):233-45. PubMed ID: 20381530
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discrete dynamic Bayesian network analysis of fMRI data.
    Burge J; Lane T; Link H; Qiu S; Clark VP
    Hum Brain Mapp; 2009 Jan; 30(1):122-37. PubMed ID: 17990301
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data.
    Kim YH; Kim J; Lee JH
    Neuroimage; 2012 Dec; 63(4):1864-89. PubMed ID: 22939873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes.
    Marquand A; Howard M; Brammer M; Chu C; Coen S; Mourão-Miranda J
    Neuroimage; 2010 Feb; 49(3):2178-89. PubMed ID: 19879364
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of spatial smoothing on fMRI group inferences.
    Mikl M; Marecek R; Hlustík P; Pavlicová M; Drastich A; Chlebus P; Brázdil M; Krupa P
    Magn Reson Imaging; 2008 May; 26(4):490-503. PubMed ID: 18060720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A correlation-based method for extracting subject-specific components and artifacts from group-fMRI data.
    Pamilo S; Malinen S; Hotta J; Seppä M
    Eur J Neurosci; 2015 Nov; 42(9):2726-41. PubMed ID: 26226919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.