BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16566007)

  • 21. Architectonics and cortical connections of the upper bank of the superior temporal sulcus in the rhesus monkey: an analysis in the tangential plane.
    Padberg J; Seltzer B; Cusick CG
    J Comp Neurol; 2003 Dec; 467(3):418-34. PubMed ID: 14608603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys.
    Saleem KS; Price JL; Hashikawa T
    J Comp Neurol; 2007 Feb; 500(6):973-1006. PubMed ID: 17183540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortico-cortical connections of areas 44 and 45B in the macaque monkey.
    Frey S; Mackey S; Petrides M
    Brain Lang; 2014 Apr; 131():36-55. PubMed ID: 24182840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex.
    Cusick CG; Seltzer B; Cola M; Griggs E
    J Comp Neurol; 1995 Sep; 360(3):513-35. PubMed ID: 8543656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The organization and connections of anterior and posterior parietal cortex in titi monkeys: do New World monkeys have an area 2?
    Padberg J; Disbrow E; Krubitzer L
    Cereb Cortex; 2005 Dec; 15(12):1938-63. PubMed ID: 15758196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortical connections of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action.
    Bakola S; Gamberini M; Passarelli L; Fattori P; Galletti C
    Cereb Cortex; 2010 Nov; 20(11):2592-604. PubMed ID: 20176687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The visual parietal areas in the macaque monkey: current structural knowledge and ignorance.
    Cavada C
    Neuroimage; 2001 Jul; 14(1 Pt 2):S21-6. PubMed ID: 11373128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional cytoarchitectonic analysis of the posterior bank of the human precentral sulcus.
    Schmitt O; Modersitzki J; Heldmann S; Wirtz S; Hömke L; Heide W; Kömpf D; Wree A
    Anat Embryol (Berl); 2005 Dec; 210(5-6):387-400. PubMed ID: 16177908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytoarchitecture, myeloarchitecture, and parcellation of the chimpanzee inferior parietal lobe.
    Reyes LD; Do Kim Y; Issa H; Hopkins WD; Mackey S; Sherwood CC
    Brain Struct Funct; 2023 Jan; 228(1):63-82. PubMed ID: 35676436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Architectonic subdivision of the human orbital and medial prefrontal cortex.
    Ongür D; Ferry AT; Price JL
    J Comp Neurol; 2003 Jun; 460(3):425-49. PubMed ID: 12692859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study.
    Blatt GJ; Pandya DN; Rosene DL
    J Comp Neurol; 2003 Nov; 466(2):161-79. PubMed ID: 14528446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex.
    Lewis JW; Van Essen DC
    J Comp Neurol; 2000 Dec; 428(1):79-111. PubMed ID: 11058226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macaque monkey retrosplenial cortex: III. Cortical efferents.
    Kobayashi Y; Amaral DG
    J Comp Neurol; 2007 Jun; 502(5):810-33. PubMed ID: 17436282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative demonstration of comparable architectonic areas within the ventromedial and lateral orbital frontal cortex in the human and the macaque monkey brains.
    Mackey S; Petrides M
    Eur J Neurosci; 2010 Dec; 32(11):1940-50. PubMed ID: 21050280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The primary motor and premotor areas of the human cerebral cortex.
    Chouinard PA; Paus T
    Neuroscientist; 2006 Apr; 12(2):143-52. PubMed ID: 16514011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The human inferior parietal lobule in stereotaxic space.
    Caspers S; Eickhoff SB; Geyer S; Scheperjans F; Mohlberg H; Zilles K; Amunts K
    Brain Struct Funct; 2008 Aug; 212(6):481-95. PubMed ID: 18651173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corticocortical efferent systems in the monkey: a quantitative spatial analysis of the tangential distribution of cells of origin.
    Caminiti R; Zeger S; Johnson PB; Urbano A; Georgopoulos AP
    J Comp Neurol; 1985 Nov; 241(4):405-19. PubMed ID: 4078039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Architecture of the inferior parietal cortex in capuchin monkey.
    Bonfim V; Mayer A; Nascimento-Silva ML; Lima B; Soares JGM; Gattass R
    J Comp Neurol; 2023 Dec; 531(18):1909-1925. PubMed ID: 36592397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey.
    Petrides M; Pandya DN
    J Comp Neurol; 2006 Sep; 498(2):227-51. PubMed ID: 16856142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leftward interhemispheric asymmetry of macaque monkey temporal lobe language area homolog is evident at the cytoarchitectural, but not gross anatomic level.
    Gannon PJ; Kheck N; Hof PR
    Brain Res; 2008 Mar; 1199():62-73. PubMed ID: 18262172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.