BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16566138)

  • 1. [Effect of intermittent hypoxic hypoxia on energy supply of rat skeletal muscle during adaptation to physical load].
    Havenauskas BL; Nosar VI; Kurhaliuk NM; Nazarenko AI; Bratus' LV; Shuvalova IM; Man'kovs'ka IM
    Ukr Biokhim Zh (1999); 2005; 77(3):120-6. PubMed ID: 16566138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of intermittent hypoxic training on indices of adaptation to hypoxia in rats during physical exertion].
    Havenauskas BL; Man'kovs'ka IM; Nosar VI; Nazarenko AI; Bratus' LV
    Fiziol Zh (1994); 2004; 50(6):32-42. PubMed ID: 15732757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regulation of oxidative phosphorylation by liver mitochondria receptors after adaptation by rats to periodic normal pressure and acute hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Koliesnikova IeE
    Ukr Biokhim Zh (1999); 2002; 74(6):114-9. PubMed ID: 12924024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Exogenous L-arginine modulates mitochondrial and microsomal oxidation in acute and intermittent normobaric hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Koliesnikova IeE; Aleksiuk LI
    Fiziol Zh (1994); 2002; 48(5):67-73. PubMed ID: 12449619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Intermittent hypoxic training with exogenous nitric oxide improves rat liver mitochondrial oxidation and phosphorylation during acute hypoxia].
    Serebrovs'ka TV; Kurgaliuk NM; Nosar VI; Kolesnikova IeE
    Fiziol Zh (1994); 2001; 47(1):85-92. PubMed ID: 11296563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of ATP-sensitive potassium channel modulators and intermittent hypoxia on mitochondrial respiration during stress].
    Tkachenko HM; Moĭbenko OO; Kurhaliuk NM
    Ukr Biokhim Zh (1999); 2003; 75(6):115-22. PubMed ID: 15143528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of L-arginine and N(omega)-nitro-L-arginine on oxidative phosphorylation and lipid peroxidation in rats with various tolerance to hypoxia under stressful conditions].
    Ikkert OV; Kurhaliuk NM; Hordiĭ SK
    Ukr Biokhim Zh (1999); 2001; 73(6):89-97. PubMed ID: 12199086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle.
    Ponsot E; Dufour SP; Zoll J; Doutrelau S; N'Guessan B; Geny B; Hoppeler H; Lampert E; Mettauer B; Ventura-Clapier R; Richard R
    J Appl Physiol (1985); 2006 Apr; 100(4):1249-57. PubMed ID: 16339351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Myocardium mitochondria functional state during adaptation to intermittent hypoxia and treatment with L-arginine].
    Kurhaliuk NM; Tkachenko HM
    Ukr Biokhim Zh (1999); 2004; 76(3):79-84. PubMed ID: 19621743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Intermittent hypoxic training and L-arginine as corrective agents for myocardial energy supply under acute hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Nosar VI; Kolesnikova EE; Moĭbenko OO
    Ukr Biokhim Zh (1999); 2002; 74(1):82-7. PubMed ID: 12199105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].
    Tkachenko HM; Kurhaliuk NM; Vovkanych LS
    Ukr Biokhim Zh (1999); 2004; 76(1):56-64. PubMed ID: 15909418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of intermittent hypoxia training on mitochondrial oxygen consumption in rats exposed to skeletal unloading.
    Kurhaluk N; Tkachenko H; Nosar V
    Ann Clin Lab Sci; 2013; 43(1):54-63. PubMed ID: 23462606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Carnosine in adaptation to hypobaric hypoxia].
    Korobov VN; Doliba NM; Telegus IaV
    Biokhimiia; 1993 May; 58(5):740-4. PubMed ID: 8338886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle.
    Galbès O; Goret L; Caillaud C; Mercier J; Obert P; Candau R; Py G
    Acta Physiol (Oxf); 2008 Jun; 193(2):163-73. PubMed ID: 18081885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does growth hormone treatment alter skeletal muscle mitochondrial respiration in rats?
    Peyreigne C; Raynaud E; Fedou C; Prefaut C; Brun JF; Mercier J
    Horm Res; 2002; 58(6):287-91. PubMed ID: 12446993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle.
    Venditti P; Masullo P; Di Meo S
    Arch Biochem Biophys; 1999 Dec; 372(2):315-20. PubMed ID: 10600170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [MITOCHONDRIA RESPIRATION AND OXIDATIVE PHOSPHORILATION OF RAT TISSUES AT TAURINE PER ORAL INJECTION].
    Ostapiv RD; Manko VV
    Fiziol Zh (1994); 2015; 61(6):104-13. PubMed ID: 27025051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [State of mitochondrial respiration and calcium capacity in livers of rats with different resistance to hypoxia after injections of L-arginine].
    Kurhaliuk NM
    Fiziol Zh (1994); 2001; 47(3):64-72. PubMed ID: 11519253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue oxygenation and mitochondrial respiration under different modes of intermittent hypoxia.
    Serebrovskaya TV; Nosar VI; Bratus LV; Gavenauskas BL; Mankovska IM
    High Alt Med Biol; 2013 Sep; 14(3):280-8. PubMed ID: 24028642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats.
    Venditti P; Di Meo S
    Int J Sports Med; 1997 Oct; 18(7):497-502. PubMed ID: 9414071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.