These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16566146)

  • 1. Labile zinc concentration and free copper ion activity in the rhizosphere of forest soils.
    Courchesne F; Kruyts N; Legrand P
    Environ Toxicol Chem; 2006 Mar; 25(3):635-42. PubMed ID: 16566146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils.
    Cloutier-Hurteau B; Sauvé S; Courchesne F
    Environ Sci Technol; 2007 Dec; 41(23):8104-10. PubMed ID: 18186344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The speciation of water-soluble Al and Zn in the rhizosphere of forest soils.
    Cloutier-Hurteau B; Turmel MC; Sauvé S; Courchesne F
    J Environ Monit; 2010 Jun; 12(6):1274-86. PubMed ID: 20383395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.
    Vinichuk MM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):980-7. PubMed ID: 23485250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction between particulate organic matter and copper, zinc in paddy soil.
    Shi J; Wu Q; Zheng C; Yang J
    Environ Pollut; 2018 Dec; 243(Pt B):1394-1402. PubMed ID: 30273866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface runoff losses of copper and zinc in sandy soils.
    Zhang M; He Z; Calvert DV; Stoffella PJ; Yang X
    J Environ Qual; 2003; 32(3):909-15. PubMed ID: 12809291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhizosphere pH gradient controls copper availability in a strongly acidic soil.
    Bravin MN; Tentscher P; Rose J; Hinsinger P
    Environ Sci Technol; 2009 Aug; 43(15):5686-91. PubMed ID: 19731663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of copper, lead and zinc in soil-grass ecosystem in aspect of soils properties, in Poland.
    Niesiobędzka K
    Bull Environ Contam Toxicol; 2012 Apr; 88(4):627-33. PubMed ID: 22349282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.
    Tonietto AE; Lombardi AT; Choueri RB; Vieira AA
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15920-30. PubMed ID: 26050150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper and zinc speciation in the solution of a soil-sludge mixture.
    Vulkan R; Mingelgrin U; Ben-Asher J; Frenkel H
    J Environ Qual; 2002; 31(1):193-203. PubMed ID: 11837423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales.
    Tipping E; Rieuwerts J; Pan G; Ashmore MR; Lofts S; Hill MT; Farago ME; Thornton I
    Environ Pollut; 2003; 125(2):213-25. PubMed ID: 12810315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of pH, ion strength and reactant content on the complexation of Cu2+ by various natural organic ligands from water and soil in Hong Kong.
    Cao J; Lam KC; Dawson RW; Liu WX; Tao S
    Chemosphere; 2004 Jan; 54(4):507-14. PubMed ID: 14581053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of soil properties on copper release in soil solutions at low moisture content.
    Ponizovsky AA; Thakali S; Allen HE; Di Toro DM; Ackerman AJ
    Environ Toxicol Chem; 2006 Mar; 25(3):671-82. PubMed ID: 16566151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogeochemical distribution of Pb and Zn forms in two calcareous soils affected by mycorrhizal symbiosis and alfalfa rhizosphere.
    Moshiri F; Ebrahimi H; Ardakani MR; Rejali F; Mousavi SM
    Ecotoxicol Environ Saf; 2019 Sep; 179():241-248. PubMed ID: 31051397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does a decade of soil organic fertilization promote copper and zinc phytoavailability? Evidence from a laboratory biotest with field-collected soil samples.
    Laurent C; Bravin MN; Crouzet O; Lamy I
    Sci Total Environ; 2024 Jan; 906():167771. PubMed ID: 37844634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China.
    Luo XS; Zhou DM; Liu XH; Wang YJ
    J Hazard Mater; 2006 Apr; 131(1-3):19-27. PubMed ID: 16260085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A WHAM-based kinetics model for Zn adsorption and desorption to soils.
    Shi Z; Di Toro DM; Allen HE; Sparks DL
    Environ Sci Technol; 2008 Aug; 42(15):5630-6. PubMed ID: 18754486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of free/labile concentrations of trace metals in Athabasca oil sands region streams (Alberta, Canada) using diffusive gradient in thin films and a thermodynamic equilibrium model.
    Zhu Y; Guéguen C
    Environ Pollut; 2016 Dec; 219():1140-1147. PubMed ID: 27638457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China.
    Shen ZJ; Xu C; Chen YS; Zhang Z
    Ecotoxicol Environ Saf; 2017 Sep; 143():19-27. PubMed ID: 28494313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc-sulfur and cadmium-sulfur association in metalliferous peats: evidence from spectroscopy, distribution coefficients, and phytoavailability.
    Martínez CE; McBride MB; Kandianis MT; Duxbury JM; Yoon SJ; Bleam WF
    Environ Sci Technol; 2002 Sep; 36(17):3683-9. PubMed ID: 12322738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.