These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16566147)

  • 1. Assessment and control of the bioavailability of nickel in soils.
    Echevarria G; Massoura ST; Sterckeman T; Becquer T; Schwartz C; Morel JL
    Environ Toxicol Chem; 2006 Mar; 25(3):643-51. PubMed ID: 16566147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of plant uptake of radioactive nickel from soils.
    Denys S; Echevarria G; Leclerc-cessac E; Massoura S; Morel JL
    J Environ Radioact; 2002; 62(2):195-205. PubMed ID: 12171471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Isotopic Exchange Kinetic Model to Assess the Speciation of Metal Available Pool in Soil: The Case of Nickel.
    Zelano IO; Sivry Y; Quantin C; Gélabert A; Maury A; Phalyvong K; Benedetti MF
    Environ Sci Technol; 2016 Dec; 50(23):12848-12856. PubMed ID: 27802027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils.
    Garforth JM; Bailey EH; Tye AM; Young SD; Lofts S
    Chemosphere; 2016 Jul; 155():534-541. PubMed ID: 27153236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation and isotopic exchangeability of nickel in soil solution.
    Nolan AL; Ma Y; Lombi E; McLaughlin MJ
    J Environ Qual; 2009; 38(2):485-92. PubMed ID: 19202018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multielementary (Cd, Cu, Pb, Zn, Ni) Stable Isotopic Exchange Kinetic (SIEK) method to characterize polymetallic contaminations.
    Sivry Y; Riotte J; Sappin-Didier V; Munoz M; Redon PO; Denaix L; Dupré B
    Environ Sci Technol; 2011 Aug; 45(15):6247-53. PubMed ID: 21728280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility of Ni, Co, and Mn in ultramafic mining soils of New Caledonia, assessed by kinetic EDTA extractions.
    Pasquet C; Monna F; van Oort F; Gunkel-Grillon P; Laporte-Magoni C; Losno R; Chateau C
    Environ Monit Assess; 2018 Oct; 190(11):638. PubMed ID: 30338397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of sewage irrigation on speciation of nickel in soils and its accumulation in crops of industrial towns of Punjab.
    Khurana MP; Bansal RL
    J Environ Biol; 2008 Sep; 29(5):793-8. PubMed ID: 19295085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of lead availability in contaminated soil using isotope dilution techniques.
    Tongtavee N; Shiowatana J; McLaren RG; Gray CW
    Sci Total Environ; 2005 Sep; 348(1-3):244-56. PubMed ID: 16162328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching potential of geogenic nickel in serpentine soils from Taiwan and Austria.
    Hseu ZY; Su YC; Zehetner F; Hsi HC
    J Environ Manage; 2017 Jan; 186(Pt 2):151-157. PubMed ID: 26928072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of middle-term land reclamation on nickel soil-water interaction: a case study from reclaimed salt marshes of Po River Delta, Italy.
    Di Giuseppe D; Melchiorre M; Faccini B; Ferretti G; Coltorti M
    Environ Monit Assess; 2017 Sep; 189(10):523. PubMed ID: 28948443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variance in heavy metal leachability of Pb-, Ni-, and Cr-contaminated soils through red brick sintering procedure.
    Chen SW; Cheng PC; Tu YT; Chen CC; Cheng SF
    Environ Monit Assess; 2019 Mar; 191(4):253. PubMed ID: 30919162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni.
    Hale B; Gopalapillai Y; Pellegrino A; Jennett T; Kikkert J; Lau W; Schlekat C; McLaughlin MJ
    Environ Pollut; 2017 Dec; 231(Pt 1):165-172. PubMed ID: 28800485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisurface modeling of Ni bioavailability to wheat (Triticum aestivum L.) in various soils.
    Zhao X; Jiang Y; Gu X; Gu C; Taylor JA; Evans LJ
    Environ Pollut; 2018 Jul; 238():590-598. PubMed ID: 29609170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccessibility estimates by gastric SBRC method to determine relationships to bioavailability of nickel in ultramafic soils.
    Vasiluk L; Sowa J; Sanborn P; Ford F; Dutton MD; Hale B
    Sci Total Environ; 2019 Jul; 673():685-693. PubMed ID: 31003095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of liming on nickel bioavailability and toxicity to oat and soybean grown in field soils containing aged emissions from a nickel refinery.
    Cioccio S; Gopalapillai Y; Dan T; Hale B
    Environ Toxicol Chem; 2017 Apr; 36(4):1110-1119. PubMed ID: 27684576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability of copper and nickel in naturally metal-enriched soils of Carajás Mining Province, Eastern Amazon, Brazil.
    Martins GC; da Silva Junior EC; Ramos SJ; Maurity CW; Sahoo PK; Dall'Agnol R; Guilherme LRG
    Environ Monit Assess; 2021 Apr; 193(5):256. PubMed ID: 33835289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity Thresholds Based on EDTA Extractable Nickel and Barley Root Elongation in Chinese Soils.
    Zhu G; Jiang B; Yang G; Li J; Ma Y
    Int J Environ Res Public Health; 2018 Apr; 15(4):. PubMed ID: 29617276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying nickel in soils and plants in an ultramafic area in Philippines.
    Susaya JP; Kim KH; Asio VB; Chen ZS; Navarrete I
    Environ Monit Assess; 2010 Aug; 167(1-4):505-14. PubMed ID: 19603280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.