These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 16566170)
21. Immobilization of copper in contaminated sandy soils using calcium water treatment residue. Fan J; He Z; Ma LQ; Yang Y; Yang X; Stoffella PJ J Hazard Mater; 2011 May; 189(3):710-8. PubMed ID: 21454013 [TBL] [Abstract][Full Text] [Related]
22. Validating the Use of a Toxicity Database for Prediction of Plant Cover and Biodiversity in Multi-Metal Mining-Impacted Soils. Guzmán-Rangel G; Torres Díaz AN; Pavón Meza EL; Oorts K; Smolders E Environ Toxicol Chem; 2020 Sep; 39(9):1826-1838. PubMed ID: 32503078 [TBL] [Abstract][Full Text] [Related]
23. Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile. Mondaca P; Catrin J; Verdejo J; Sauvé S; Neaman A Environ Pollut; 2017 Apr; 223():146-152. PubMed ID: 28131477 [TBL] [Abstract][Full Text] [Related]
24. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil. Ottosen LM; Lepkova K; Kubal M J Hazard Mater; 2006 Sep; 137(1):113-20. PubMed ID: 16533561 [TBL] [Abstract][Full Text] [Related]
25. Copper inhibition of soil organic matter decomposition in a seventy-year field exposure. Sauvé S Environ Toxicol Chem; 2006 Mar; 25(3):854-7. PubMed ID: 16566171 [TBL] [Abstract][Full Text] [Related]
26. Usefulness of the sensitivity-resistance index to estimate the toxicity of copper on bacteria in copper-contaminated soils. Kunito T; Senoo K; Saeki K; Oyaizu H; Matsumoto S Ecotoxicol Environ Saf; 1999 Oct; 44(2):182-9. PubMed ID: 10571465 [TBL] [Abstract][Full Text] [Related]
27. Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper. Liu J; Lü X; Xie J; Chu Y; Sun C; Wang Q Environ Sci Pollut Res Int; 2009 Jun; 16(4):414-22. PubMed ID: 19067015 [TBL] [Abstract][Full Text] [Related]
28. Derivation of ecological criteria for copper in land-applied biosolids and biosolid-amended agricultural soils. Lu T; Li J; Wang X; Ma Y; Smolders E; Zhu N J Environ Manage; 2016 Dec; 183(Pt 3):945-951. PubMed ID: 27681873 [TBL] [Abstract][Full Text] [Related]
29. Influences of soil properties and leaching on copper toxicity to barley root elongation. Li B; Ma Y; McLaughlin MJ; Kirby JK; Cozens G; Liu J Environ Toxicol Chem; 2010 Apr; 29(4):835-42. PubMed ID: 20821512 [TBL] [Abstract][Full Text] [Related]
30. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Smolders E; Oorts K; Van Sprang P; Schoeters I; Janssen CR; McGrath SP; McLaughlin MJ Environ Toxicol Chem; 2009 Aug; 28(8):1633-42. PubMed ID: 19301943 [TBL] [Abstract][Full Text] [Related]
31. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
32. The effect of earthworms on copper fractionation of freshly and long-term polluted soils. Fujii Y; Kaneko N Ecotoxicol Environ Saf; 2009 Sep; 72(6):1754-9. PubMed ID: 19477521 [TBL] [Abstract][Full Text] [Related]
33. Short-term natural attenuation of copper in soils: effects of time, temperature, and soil characteristics. Ma Y; Lombi E; Nolan AL; McLaughlin MJ Environ Toxicol Chem; 2006 Mar; 25(3):652-8. PubMed ID: 16566148 [TBL] [Abstract][Full Text] [Related]
34. Phytoavailability of potentially toxic elements from industrially contaminated soils to wild grass. Yotova G; Zlateva B; Ganeva S; Simeonov V; Kudłak B; Namieśnik J; Tsakovski S Ecotoxicol Environ Saf; 2018 Nov; 164():317-324. PubMed ID: 30125778 [TBL] [Abstract][Full Text] [Related]
35. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils. Kim B; Kim YS; Kim BM; Hay AG; McBride MB Environ Toxicol Chem; 2011 Mar; 30(3):596-601. PubMed ID: 21298705 [TBL] [Abstract][Full Text] [Related]
36. Enzyme activities and microbial functional diversity in metal(loid) contaminated soils near to a copper smelter. Aponte H; Mondaca P; Santander C; Meier S; Paolini J; Butler B; Rojas C; Diez MC; Cornejo P Sci Total Environ; 2021 Jul; 779():146423. PubMed ID: 33752014 [TBL] [Abstract][Full Text] [Related]
37. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile. Bustos V; Mondaca P; Verdejo J; Sauvé S; Gaete H; Celis-Diez JL; Neaman A Ecotoxicol Environ Saf; 2015 Dec; 122():448-54. PubMed ID: 26398238 [TBL] [Abstract][Full Text] [Related]
38. Phytotoxicity and microbial respiration of Ni-spiked soils after field aging for 12 yr. Tang X; McBride MB Environ Toxicol Chem; 2018 Jul; 37(7):1933-1939. PubMed ID: 29687493 [TBL] [Abstract][Full Text] [Related]
39. [Aging characteristics of copper and zinc added to typical soils of China]. Xu MG; Wang BQ; Zhou SW; Li SQ; Chen MM; Duan GL Huan Jing Ke Xue; 2008 Nov; 29(11):3213-8. PubMed ID: 19186830 [TBL] [Abstract][Full Text] [Related]
40. Respiration parameters determined by the ISO-17155 method as potential indicators of copper pollution in vineyard soils after long-term fungicide treatment. Soler-Rovira P; Fernández-Calviño D; Arias-Estévez M; Plaza C; Polo A Sci Total Environ; 2013 Mar; 447():25-31. PubMed ID: 23376513 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]