BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16566174)

  • 1. The biotic ligand model for plants and metals: technical challenges for field application.
    Antunes PM; Berkelaar EJ; Boyle D; Hale BA; Hendershot W; Voigt A
    Environ Toxicol Chem; 2006 Mar; 25(3):875-82. PubMed ID: 16566174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizotoxicity of cadmium and copper in soil extracts.
    Voigt A; Hendershot WH; Sunahara GI
    Environ Toxicol Chem; 2006 Mar; 25(3):692-701. PubMed ID: 16566153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.
    Niyogi S; Wood CM
    Environ Sci Technol; 2004 Dec; 38(23):6177-92. PubMed ID: 15597870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH.
    Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X
    Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity Assessment of Binary Metal Mixtures (Copper-Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model.
    Liu A; Li J; Li M; Niu XY; Wang J
    Arch Environ Contam Toxicol; 2017 Feb; 72(2):312-319. PubMed ID: 28050624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between numeric and approximate analytic solutions for the prediction of soil metal uptake by roots. Example of cadmium.
    Schneider A; Lin Z; Sterckeman T; Nguyen C
    Sci Total Environ; 2018 Apr; 619-620():1194-1205. PubMed ID: 29734598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Pollut; 2014 Dec; 195():133-47. PubMed ID: 25217851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil and plant factors influencing the accumulation of heavy metals by plants.
    Cataldo DA; Wildung RE
    Environ Health Perspect; 1978 Dec; 27():149-59. PubMed ID: 367766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transfer of trace metals in the soil-plant-arthropod system.
    Tibbett M; Green I; Rate A; De Oliveira VH; Whitaker J
    Sci Total Environ; 2021 Jul; 779():146260. PubMed ID: 33744587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of trace metals in organisms and ecosystems: prediction of metal bioconcentration in different organisms and estimation of exposure risks.
    Fränzle S; Markert B; Wünschmann S
    Environ Pollut; 2007 Nov; 150(1):23-33. PubMed ID: 17433508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability.
    Sander SG; Hunter KA; Harms H; Wells M
    Environ Sci Technol; 2011 Aug; 45(15):6388-95. PubMed ID: 21751821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear biotic ligand model for assessing alleviation effects of Ca, Mg, and K on Cd toxicity to soybean roots.
    Chen BC; Wang PJ; Ho PC; Juang KW
    Ecotoxicology; 2017 Sep; 26(7):942-955. PubMed ID: 28643161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards.
    Smolders E; Oorts K; Van Sprang P; Schoeters I; Janssen CR; McGrath SP; McLaughlin MJ
    Environ Toxicol Chem; 2009 Aug; 28(8):1633-42. PubMed ID: 19301943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms.
    Spurgeon DJ; Lofts S; Hankard PK; Toal M; McLellan D; Fishwick S; Svendsen C
    Environ Toxicol Chem; 2006 Mar; 25(3):788-96. PubMed ID: 16566164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver.
    Paquin PR; Zoltay V; Winfield RP; Wu KB; Mathew R; Santore RC; Di Toro DM
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):305-43. PubMed ID: 12356535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of zinc and cadmium release in freshly contaminated soils.
    Zhang H; Davison W; Tye AM; Crout NM; Young SD
    Environ Toxicol Chem; 2006 Mar; 25(3):664-70. PubMed ID: 16566150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A; Shoji R
    Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved biotic ligand model (BLM) for predicting Co(II)-toxicity to wheat root elongation: The influences of toxic metal speciation and accompanying ions.
    Wang X; Song N
    Ecotoxicol Environ Saf; 2019 Oct; 182():109433. PubMed ID: 31319244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace metal mobilization by organic soil amendments: insights gained from analyses of solid and solution phase complexation of cadmium, nickel and zinc.
    Welikala D; Hucker C; Hartland A; Robinson BH; Lehto NJ
    Chemosphere; 2018 May; 199():684-693. PubMed ID: 29475159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.