These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 1656674)
1. Neuroendocrine-immunology: from systemic interactions to the immune tolerance of self neuroendocrine functions. Geenen V; Robert F; Legros JJ; Defresne MP; Boniver J; Martial J; Lefèbvre PJ; Franchimont P Acta Clin Belg; 1991; 46(3):135-41. PubMed ID: 1656674 [No Abstract] [Full Text] [Related]
2. Impact of the neuroendocrine system on thymus and bone marrow function. Barnard A; Layton D; Hince M; Sakkal S; Bernard C; Chidgey A; Boyd R Neuroimmunomodulation; 2008; 15(1):7-18. PubMed ID: 18667795 [TBL] [Abstract][Full Text] [Related]
4. Evidence of conserved neuroendocrine interactions in the thymus: intrathymic expression of neuropeptides in mammalian and non-mammalian vertebrates. Silva AB; Palmer DB Neuroimmunomodulation; 2011; 18(5):264-70. PubMed ID: 21952678 [TBL] [Abstract][Full Text] [Related]
5. Cryptocrine signaling in the thymus network. Implications for central T-cell tolerance of neuroendocrine functions. Geenen V; Cormann-Goffin N; Vandersmissen E; Martens H; Benhida A; Martial J; Franchimont P Ann N Y Acad Sci; 1994 Nov; 741():85-99. PubMed ID: 7825830 [No Abstract] [Full Text] [Related]
6. Thymic T-cell tolerance of neuroendocrine functions: physiology and pathophysiology. Geenen V; Kecha O; Brilot F; Hansenne I; Renard C; Martens H Cell Mol Biol (Noisy-le-grand); 2001 Feb; 47(1):179-88. PubMed ID: 11292253 [TBL] [Abstract][Full Text] [Related]
7. [Neuropeptides, Cytokines and Thymus Peptides as Effectors of Interactions Between Thymus and Neuroendocrine System]. Torkhovskaya TI; Belova OV; Zimina IV; Kryuchkova AV; Moskvina SN; Bystrova OV; Arion VY; Sergienko VI Vestn Ross Akad Med Nauk; 2015; (6):727-33. PubMed ID: 27093801 [TBL] [Abstract][Full Text] [Related]
9. Controlling immunopathology at the expense of critical immune functions--a tipping of the balance by neuroendocrine-immune interactions. Bonneau RH Brain Behav Immun; 2007 Oct; 21(7):888-9. PubMed ID: 17656067 [No Abstract] [Full Text] [Related]
10. Role of the thymus in the development of tolerance and autoimmunity towards the neuroendocrine system. Geenen V; Brilot F Ann N Y Acad Sci; 2003 May; 992():186-95. PubMed ID: 12794058 [TBL] [Abstract][Full Text] [Related]
12. Neuroendocrine modulation of the thymus-dependent immune system. Agonists and mechanisms. Hadden JW Ann N Y Acad Sci; 1987; 496():39-48. PubMed ID: 3300472 [No Abstract] [Full Text] [Related]
13. The role of the reticulo-epithelial (RE) cell network in the immuno-neuroendocrine regulation of intrathymic lymphopoiesis. Bodey B; Bodey B; Siegel SE; Kaiser HE Anticancer Res; 2000; 20(3A):1871-88. PubMed ID: 10928121 [TBL] [Abstract][Full Text] [Related]
14. The immune system as a sensorial system that can modulate brain functions and reset homeostasis. Besedovsky HO Ann N Y Acad Sci; 2019 Feb; 1437(1):5-14. PubMed ID: 30126011 [TBL] [Abstract][Full Text] [Related]
15. The immune-neuroendocrine homeostatic network and aging. Goya RG Gerontology; 1991; 37(4):208-13. PubMed ID: 1916311 [TBL] [Abstract][Full Text] [Related]
17. The neuro-immunological interface in an evolutionary perspective: the dynamic relationship between effector and recognition systems. Ottaviani E; Valensin S; Franceschi C Front Biosci; 1998 Apr; 3():d431-5. PubMed ID: 9545439 [TBL] [Abstract][Full Text] [Related]