BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 165671)

  • 1. Translocation of cytoplasmic protein kinase and cyclic adenosine monophosphate-binding protein to intracellular acceptor sites.
    Jungmann RA; Lee S; DeAngelo AB
    Adv Cyclic Nucleotide Res; 1975; 5():281-306. PubMed ID: 165671
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of action of gonadotropin. IV. Cyclic adenosine monophosphate-dependent translocation of ovarian cytoplasmic cyclic adenosine monophosphate-binding protein and protein kinase to nuclear acceptor sites.
    Jungmann RA; Hiestand PC; Schweppe JS
    Endocrinology; 1974 Jan; 94(1):168-83. PubMed ID: 4358028
    [No Abstract]   [Full Text] [Related]  

  • 3. [Cyclic nucleotides as intracellular transmitters of hormone action].
    Iudaev NA; Afinogenova SA; PokrovskiÄ­ BV; Protasova TN
    Usp Sovrem Biol; 1975; 80(3):351-69. PubMed ID: 3057
    [No Abstract]   [Full Text] [Related]  

  • 4. Guanosine 3',5'-monophosphate receptor protein: separation from adenosine 3',5'-monophosphate receptor protein.
    Gill GN; Kanstein CB
    Biochem Biophys Res Commun; 1975 Apr; 63(4):1113-22. PubMed ID: 165815
    [No Abstract]   [Full Text] [Related]  

  • 5. Adrenocorticotrophic hormone and the control of adrenal corticosteroidogenesis.
    Schulster D
    Adv Steroid Biochem Pharmacol; 1974; 4(0):233-95. PubMed ID: 4153268
    [No Abstract]   [Full Text] [Related]  

  • 6. Nuclear translocation of catalytic subunits of cytosol cAMP-dependent protein kinase in the transsynaptic induction of medullary tyrosine hydroxylase.
    Guidotti A; Chuang DM; Hollenbeck R; Costa E
    Adv Cyclic Nucleotide Res; 1978; 9():185-97. PubMed ID: 27077
    [No Abstract]   [Full Text] [Related]  

  • 7. Inverse relation between estrogen receptors and cyclic adenosine 3':5'-monophosphate-binding proteins in hormone-dependent mammary tumor regression due to dibutyryl cyclic adenosine 3':5'-monophosphate treatment or ovariectomy.
    Bodwin JS; Clair T; Cho-Chung YS
    Cancer Res; 1978 Oct; 38(10):3410-3. PubMed ID: 210938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinases.
    Krebs EG
    Curr Top Cell Regul; 1972; 5():99-133. PubMed ID: 4358204
    [No Abstract]   [Full Text] [Related]  

  • 9. Nuclear translocation of cyclic AMP-dependent protein kinase subunits during the transsynaptic activation of gene expression in rat adrenal medulla.
    Kurosawa A; Guidotti A; Costa E
    Mol Pharmacol; 1979 Jan; 15(1):115-30. PubMed ID: 218090
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of calf-ovary adenosine;3':5'-monophosphate-dependent protein kinases and adenosine-3':5'-monophosphate-binding proteins.
    Talmadge DW; Bechtel E; Salonkangas A; Huber P; Jungmann RA; Eppenberger U
    Eur J Biochem; 1975 Dec; 60(2):621-32. PubMed ID: 173547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic AMP derivatives as tools for mapping cyclic AMP binding sites of cyclic AMP-dependent protein kinases I and II.
    Miller JP
    Adv Cyclic Nucleotide Res; 1981; 14():335-44. PubMed ID: 6269386
    [No Abstract]   [Full Text] [Related]  

  • 12. Potential substrates for cAMP-independent casein kinases and cAMP-dependent protein kinase in rat liver cytoplasmic fractions.
    Pinna LA; Meggio F; Deana AD
    Prog Clin Biol Res; 1982; 102 Pt C():183-92. PubMed ID: 6300926
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of cyclic nucleotide binding to adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate-dependent protein kinases.
    Buss JE; McCune RW; Gill GN
    J Cyclic Nucleotide Res; 1979; 5(3):225-37. PubMed ID: 225357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chemistry and biological properties of nucleotides related to nucleoside 3',5'-cyclic phosphates.
    Simon LN; Shuman DA; Robins RK
    Adv Cyclic Nucleotide Res; 1973; 3():225-353. PubMed ID: 4357644
    [No Abstract]   [Full Text] [Related]  

  • 15. [Nuclear translocation and effect of cAMP-dependent protein kinase on transcription].
    Nesterova MV; Barbashov SF; Aripdzhanov AA; Abdukarimov A; Severin ES
    Biokhimiia; 1980 Jun; 45(6):979-91. PubMed ID: 6260240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptors for angiotensin I and II.
    Goodfriend TL; Lin SY
    Circ Res; 1970 Jul; 27(1 Suppl 1):163-74. PubMed ID: 4317055
    [No Abstract]   [Full Text] [Related]  

  • 17. Partial purification and characterization of the defective cyclic adenosine 3':5'-monophosphate binding protein kinase from adrenocortical carcinoma.
    Sharma RK; Shanker G; Ahrens H; Ahmed NK
    Cancer Res; 1977 Sep; 37(9):3297-300. PubMed ID: 195724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein phosphorylation in nuclei of adrenal medulla incubated with cyclic adenosine 3':5'-monophosphate-dependent protein kinase.
    Chuang DM; Hollenbeck RA; Costa E
    J Biol Chem; 1977 Dec; 252(23):8365-73. PubMed ID: 200609
    [No Abstract]   [Full Text] [Related]  

  • 19. Enhanced template activity in chromatin from adrenal medulla after phosphorylation of chromosomal proteins.
    Chuang DM; Hollenbeck R; Costa E
    Science; 1976 Jul; 193(4247):60-2. PubMed ID: 180597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear protein-kinase activity in perfused rat liver stimulated with dibutyryl-adenosine cyclic 3':5'-monophosphate.
    Castagna M; Palmer WK; Walsh DA
    Eur J Biochem; 1975 Jun; 55(1):193-9. PubMed ID: 170096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.