These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16567638)

  • 1. Physically realistic homology models built with ROSETTA can be more accurate than their templates.
    Misura KM; Chivian D; Rohl CA; Kim DE; Baker D
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5361-6. PubMed ID: 16567638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8.
    Krieger E; Joo K; Lee J; Lee J; Raman S; Thompson J; Tyka M; Baker D; Karplus K
    Proteins; 2009; 77 Suppl 9(Suppl 9):114-22. PubMed ID: 19768677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution comparative modeling with RosettaCM.
    Song Y; DiMaio F; Wang RY; Kim D; Miles C; Brunette T; Thompson J; Baker D
    Structure; 2013 Oct; 21(10):1735-42. PubMed ID: 24035711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template-Guided Protein Structure Prediction and Refinement Using Optimized Folding Landscape Force Fields.
    Chen M; Lin X; Lu W; Schafer NP; Onuchic JN; Wolynes PG
    J Chem Theory Comput; 2018 Nov; 14(11):6102-6116. PubMed ID: 30240202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure prediction for CASP8 with all-atom refinement using Rosetta.
    Raman S; Vernon R; Thompson J; Tyka M; Sadreyev R; Pei J; Kim D; Kellogg E; DiMaio F; Lange O; Kinch L; Sheffler W; Kim BH; Das R; Grishin NV; Baker D
    Proteins; 2009; 77 Suppl 9(0 9):89-99. PubMed ID: 19701941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein structure prediction using sparse NOE and RDC restraints with Rosetta in CASP13.
    Kuenze G; Meiler J
    Proteins; 2019 Dec; 87(12):1341-1350. PubMed ID: 31292988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology modeling of divergent proteins.
    Sudarsanam S; March CJ; Srinivasan S
    J Mol Biol; 1994 Aug; 241(2):143-9. PubMed ID: 8057355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SimFold energy function for de novo protein structure prediction: consensus with Rosetta.
    Fujitsuka Y; Chikenji G; Takada S
    Proteins; 2006 Feb; 62(2):381-98. PubMed ID: 16294329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated method for modeling proteins on known templates using distance geometry.
    Srinivasan S; March CJ; Sudarsanam S
    Protein Sci; 1993 Feb; 2(2):277-89. PubMed ID: 8443604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous prediction of protein folding and docking at high resolution.
    Das R; André I; Shen Y; Wu Y; Lemak A; Bansal S; Arrowsmith CH; Szyperski T; Baker D
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18978-83. PubMed ID: 19864631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation.
    Lange OF; Baker D
    Proteins; 2012 Mar; 80(3):884-95. PubMed ID: 22423358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using multiple templates to improve quality of homology models in automated homology modeling.
    Larsson P; Wallner B; Lindahl E; Elofsson A
    Protein Sci; 2008 Jun; 17(6):990-1002. PubMed ID: 18441233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificities of Modeling of Membrane Proteins Using Multi-Template Homology Modeling.
    Koehler Leman J; Bonneau R
    Methods Mol Biol; 2023; 2627():141-166. PubMed ID: 36959446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structure modeling for CASP10 by multiple layers of global optimization.
    Joo K; Lee J; Sim S; Lee SY; Lee K; Heo S; Lee IH; Lee SJ; Lee J
    Proteins; 2014 Feb; 82 Suppl 2():188-95. PubMed ID: 23966235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling structurally variable regions in homologous proteins with rosetta.
    Rohl CA; Strauss CE; Chivian D; Baker D
    Proteins; 2004 May; 55(3):656-77. PubMed ID: 15103629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protein structure prediction problem could be solved using the current PDB library.
    Zhang Y; Skolnick J
    Proc Natl Acad Sci U S A; 2005 Jan; 102(4):1029-34. PubMed ID: 15653774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology modeling of an RNP domain from a human RNA-binding protein: Homology-constrained energy optimization provides a criterion for distinguishing potential sequence alignments.
    Sahasrabudhe PV; Tejero R; Kitao S; Furuichi Y; Montelione GT
    Proteins; 1998 Dec; 33(4):558-66. PubMed ID: 9849939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A benchmark testing ground for integrating homology modeling and protein docking.
    Bohnuud T; Luo L; Wodak SJ; Bonvin AM; Weng Z; Vajda S; Schueler-Furman O; Kozakov D
    Proteins; 2017 Jan; 85(1):10-16. PubMed ID: 27172383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; Baù D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.