These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16568351)

  • 21. High Reynolds number flow in tubes of complex geometry with application to wall shear stress in arteries.
    Pedley TJ
    Symp Soc Exp Biol; 1995; 49():219-41. PubMed ID: 8571226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relative effects of arterial curvature and lumen diameter on wall shear stress distributions in human right coronary arteries.
    Johnston BM; Johnston PR
    Phys Med Biol; 2007 May; 52(9):2531-44. PubMed ID: 17440250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlations among indicators of disturbed flow at the normal carotid bifurcation.
    Lee SW; Antiga L; Steinman DA
    J Biomech Eng; 2009 Jun; 131(6):061013. PubMed ID: 19449967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of endothelial calcium and nitric oxide in the localisation of atherosclerosis.
    Plank MJ; Wall DJ; David T
    Math Biosci; 2007 May; 207(1):26-39. PubMed ID: 17070868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of adenine nucleotide concentration at endothelium-fluid interface by viscous shear flow.
    Shen J; Gimbrone MA; Luscinskas FW; Dewey CF
    Biophys J; 1993 Apr; 64(4):1323-30. PubMed ID: 8494987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel design of a noncylindric stent with beneficial effects on flow characteristics: an experimental and numerical flow study in an axisymmetric arterial model with sequential mild stenoses.
    Papaioannou TG; Christofidis CCh; Mathioulakis DS; Stefanadis CI
    Artif Organs; 2007 Aug; 31(8):627-38. PubMed ID: 17651118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pulsatile blood flow on thrombosis potential with a step wall transition.
    Corbett SC; Ajdari A; Coskun AU; Nayeb-Hashemi H
    ASAIO J; 2010; 56(4):290-5. PubMed ID: 20508499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A boundary layer model for wall shear stress in arterial stenosis.
    Provenzano PP; Rutland CJ
    Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow?
    Moyle KR; Antiga L; Steinman DA
    J Biomech Eng; 2006 Jun; 128(3):371-9. PubMed ID: 16706586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing pulsatile flow in a deployed coronary stent.
    Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA
    J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of pulsatile flow on LDL transport in the arterial wall.
    Sun N; Wood NB; Hughes AD; Thom SA; Xu XY
    Ann Biomed Eng; 2007 Oct; 35(10):1782-90. PubMed ID: 17629792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of blood flow on near-the-wall mass transport of drugs and other bioactive agents: a simple formula to estimate boundary layer concentrations.
    Rugonyi S
    J Biomech Eng; 2008 Apr; 130(2):021010. PubMed ID: 18412497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental assessment of wall shear flow in models.
    Affeld K; Kertzscher U; Goubergrits L
    Biorheology; 2002; 39(3-4):485-9. PubMed ID: 12122270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shear stress distribution in arterial tree models, generated by constrained constructive optimization.
    Schreiner W; Neumann F; Karch R; Neumann M; Roedler SM; End A
    J Theor Biol; 1999 May; 198(1):27-45. PubMed ID: 10329113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models.
    Tan FP; Soloperto G; Bashford S; Wood NB; Thom S; Hughes A; Xu XY
    J Biomech Eng; 2008 Dec; 130(6):061008. PubMed ID: 19045537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake of 3H-7-cholesterol along the arterial wall at an area of stenosis.
    Deng X; Marois Y; King MW; Guidoin R
    ASAIO J; 1994; 40(2):186-91. PubMed ID: 8003757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.