These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16568759)

  • 41. Formation and Occurrence of N-Chloro-2,2-dichloroacetamide, a Previously Overlooked Nitrogenous Disinfection Byproduct in Chlorinated Drinking Waters.
    Yu Y; Reckhow DA
    Environ Sci Technol; 2017 Feb; 51(3):1488-1497. PubMed ID: 27996252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water.
    Lu J; Zhang T; Ma J; Chen Z
    J Hazard Mater; 2009 Feb; 162(1):140-5. PubMed ID: 18585856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Factors affecting the formation of nitrogenous disinfection by-products during chlorination of aspartic acid in drinking water.
    Chen W; Liu Z; Tao H; Xu H; Gu Y; Chen Z; Yu J
    Sci Total Environ; 2017 Jan; 575():519-524. PubMed ID: 27613669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formation of organic chloramines during water disinfection: chlorination versus chloramination.
    Lee W; Westerhoff P
    Water Res; 2009 May; 43(8):2233-9. PubMed ID: 19269665
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.
    Bond T; Templeton MR; Rifai O; Ali H; Graham NJ
    Chemosphere; 2014 Sep; 111():218-24. PubMed ID: 24997921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation.
    Li C; Wang D; Xu X; Wang Z
    Sci Total Environ; 2017 Jun; 587-588():177-184. PubMed ID: 28238434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system.
    West DM; Wu Q; Donovan A; Shi H; Ma Y; Jiang H; Wang J
    Chemosphere; 2016 Jun; 153():521-7. PubMed ID: 27037659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of pH on the chlorination process of phenols in drinking water.
    Ge F; Zhu L; Chen H
    J Hazard Mater; 2006 May; 133(1-3):99-105. PubMed ID: 16337340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Comparative studies on the action of chlorine and ozone on polioviruses in the reprocessing of drinking water in Essen (author's transl)].
    Thraenhart O; Kuwert E
    Zentralbl Bakteriol Orig B; 1975 Jul; 160(4-5):305-41. PubMed ID: 171885
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A picture of polar iodinated disinfection byproducts in drinking water by (UPLC/)ESI-tqMS.
    Ding G; Zhang X
    Environ Sci Technol; 2009 Dec; 43(24):9287-93. PubMed ID: 20000522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Disinfection by-product formation from the chlorination and chloramination of amines.
    Bond T; Mokhtar Kamal NH; Bonnisseau T; Templeton MR
    J Hazard Mater; 2014 Aug; 278():288-96. PubMed ID: 24981680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water.
    Ding S; Chu W; Krasner SW; Yu Y; Fang C; Xu B; Gao N
    Water Res; 2018 Oct; 142():490-500. PubMed ID: 29920459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of polydiallyldimethyl ammonium chloride coagulant on formation of chlorinated by products in drinking water.
    Chang EE; Chiang PC; Chao SH; Liang CH
    Chemosphere; 1999 Oct; 39(8):1333-46. PubMed ID: 10467727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of chloride on the formation of volatile disinfection byproducts in chlorinated swimming pools.
    E Y; Bai H; Lian L; Li J; Blatchley ER
    Water Res; 2016 Nov; 105():413-420. PubMed ID: 27664542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of chlorination on metal binding by dissolved organic matter: a study using Log-transformed differential spectra.
    Yan M; Li D; Gao J; Cheng J
    Chemosphere; 2014 May; 103():290-8. PubMed ID: 24387913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Characteristics and chlorination activity of natural organic matter in water].
    Zhang YJ; Zhou LL; Liu ZS; Jiao ZZ; Li GB
    Huan Jing Ke Xue; 2005 Jan; 26(1):104-7. PubMed ID: 15859418
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines.
    Joo SH; Mitch WA
    Environ Sci Technol; 2007 Feb; 41(4):1288-96. PubMed ID: 17593732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation, adsorption and separation of high molecular weight disinfection byproducts resulting from chlorination of aquatic humic substances.
    Zhang X; Minear RA
    Water Res; 2006 Jan; 40(2):221-30. PubMed ID: 16343584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water.
    Pan Y; Wang Y; Li A; Xu B; Xian Q; Shuang C; Shi P; Zhou Q
    Water Res; 2017 Apr; 112():129-136. PubMed ID: 28153699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.