These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 16568820)

  • 1. Combining sequence-specific probes and DNA binding dyes in real-time PCR for specific nucleic acid quantification and melting curve analysis.
    Lind K; Ståhlberg A; Zoric N; Kubista M
    Biotechniques; 2006 Mar; 40(3):315-9. PubMed ID: 16568820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New unsymmetrical cyanine dyes for real-time thermal cycling.
    Ahmad AI; Ghasemi JB
    Anal Bioanal Chem; 2007 Oct; 389(3):983-8. PubMed ID: 17673983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybridization probe pairs and single-labeled probes: an alternative approach for genotyping and quantification.
    Froehlich T; Geulen O
    Methods Mol Biol; 2008; 429():117-33. PubMed ID: 18695963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantitative PCR in the diagnosis of Leishmania].
    Mortarino M; Franceschi A; Mancianti F; Bazzocchi C; Genchi C; Bandi C
    Parassitologia; 2004 Jun; 46(1-2):163-7. PubMed ID: 15305709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNP genotyping by unlabeled probe melting analysis.
    Erali M; Palais R; Wittwer C
    Methods Mol Biol; 2008; 429():199-206. PubMed ID: 18695968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of DNA melting simulation software for in silico diagnostic assay design: targeting regions with complex melting curves and confirmation by real-time PCR using intercalating dyes.
    Rasmussen JP; Saint CP; Monis PT
    BMC Bioinformatics; 2007 Mar; 8():107. PubMed ID: 17391531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence acquisition during hybridization phase in quantitative real-time PCR improves specificity and signal-to-noise ratio.
    Mehndiratta M; Palanichamy JK; Ramalingam P; Pal A; Das P; Sinha S; Chattopadhyay P
    Biotechniques; 2008 Dec; 45(6):625-6, 628, 630 passim. PubMed ID: 19238793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence melting curve analysis using self-quenching dual-labeled peptide nucleic acid probes for simultaneously identifying multiple DNA sequences.
    Ahn JJ; Kim Y; Lee SY; Hong JY; Kim GW; Hwang SY
    Anal Biochem; 2015 Sep; 484():143-7. PubMed ID: 26049100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eprobe mediated real-time PCR monitoring and melting curve analysis.
    Hanami T; Delobel D; Kanamori H; Tanaka Y; Kimura Y; Nakasone A; Soma T; Hayashizaki Y; Usui K; Harbers M
    PLoS One; 2013; 8(8):e70942. PubMed ID: 23951046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technique for quantitative detection of specific DNA sequences using alternately binding quenching probe competitive assay combined with loop-mediated isothermal amplification.
    Tani H; Teramura T; Adachi K; Tsuneda S; Kurata S; Nakamura K; Kanagawa T; Noda N
    Anal Chem; 2007 Aug; 79(15):5608-13. PubMed ID: 17579496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed-tube genotyping of apolipoprotein E by isolated-probe PCR with multiple unlabeled probes and high-resolution DNA melting analysis.
    Poulson MD; Wittwer CT
    Biotechniques; 2007 Jul; 43(1):87-91. PubMed ID: 17695257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branch migration based selective PCR for DNA mutation enrichment and detection.
    Chen N; Ouyang X; Lin M; Liu N; Wu T; Xiao X
    Chem Commun (Camb); 2019 Jul; 55(58):8466-8469. PubMed ID: 31265022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative method for specific nucleic acid sequences using competitive polymerase chain reaction with an alternately binding probe.
    Tani H; Kanagawa T; Kurata S; Teramura T; Nakamura K; Tsuneda S; Noda N
    Anal Chem; 2007 Feb; 79(3):974-9. PubMed ID: 17263324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FIT-probes in real-time PCR.
    Socher E; Seitz O
    Methods Mol Biol; 2008; 429():187-97. PubMed ID: 18695967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of probe chemistries and platforms to improve the detection limit of real-time PCR.
    Reynisson E; Josefsen MH; Krause M; Hoorfar J
    J Microbiol Methods; 2006 Aug; 66(2):206-16. PubMed ID: 16364478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes.
    Kubota K; Ohashi A; Imachi H; Harada H
    Appl Environ Microbiol; 2006 Aug; 72(8):5311-7. PubMed ID: 16885281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal quenching probe system: flexible, specific, and cost-effective real-time polymerase chain reaction method.
    Tani H; Miyata R; Ichikawa K; Morishita S; Kurata S; Nakamura K; Tsuneda S; Sekiguchi Y; Noda N
    Anal Chem; 2009 Jul; 81(14):5678-85. PubMed ID: 19530673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Escherichia coli O157 using equal-length double-stranded fluorescence probe in a real-time polymerase chain reaction assay.
    Yu G; Niu J; Shen M; Shao H; Chen L
    Clin Chim Acta; 2006 Apr; 366(1-2):281-6. PubMed ID: 16480968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Resolution Melt Curve Analysis in Cancer Mutation Screen.
    Mehrotra M; Patel KP
    Methods Mol Biol; 2016; 1392():63-9. PubMed ID: 26843047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time multiplex PCR assays.
    Wittwer CT; Herrmann MG; Gundry CN; Elenitoba-Johnson KS
    Methods; 2001 Dec; 25(4):430-42. PubMed ID: 11846612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.