BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1656884)

  • 1. Identification of guanine and adenine nucleotides as activators of glucose-1,6-bisphosphatase activity from rat skeletal muscle.
    Bassols A; Andrés V; Ballarín M; Mahy N; Carreras J; Cussó R
    Arch Biochem Biophys; 1991 Nov; 291(1):121-5. PubMed ID: 1656884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of nucleotides and a nondialyzable factor on the hydrolysis of cyclic AMP by a cyclic nucleotide phosphodiesterase from beef heart.
    Goren EN; Rosen OM
    Arch Biochem Biophys; 1971 Feb; 142(2):720-3. PubMed ID: 4323731
    [No Abstract]   [Full Text] [Related]  

  • 3. Hydrolysis of cyclic guanosine and adenosine 3',5'-monophosphates by rat and bovine tissues.
    Beavo JA; Hardman JG; Sutherland EW
    J Biol Chem; 1970 Nov; 245(21):5649-55. PubMed ID: 4319563
    [No Abstract]   [Full Text] [Related]  

  • 4. Cyclic nucleotide phosphodiesterase activity in man, monkey, and rat.
    Williams RH; Little SA; Beug AG; Ensinck JW
    Metabolism; 1971 Aug; 20(8):743-8. PubMed ID: 4327979
    [No Abstract]   [Full Text] [Related]  

  • 5. Biological effects and catabolic metabolism of 3',5'-cyclic nucleotides and derivatives in rat adipose tissue and liver.
    Blecher M
    Metabolism; 1971 Jan; 20(1):63-77. PubMed ID: 4321573
    [No Abstract]   [Full Text] [Related]  

  • 6. The non-specific nature of the nucleoside diphosphatase of rat liver microsomes.
    Penniall R; Holbrook JP
    Biochim Biophys Acta; 1968 Mar; 151(3):700-2. PubMed ID: 4296401
    [No Abstract]   [Full Text] [Related]  

  • 7. Stimulation of adenosine 3',5'-monophosphate hydrolysis by guanosine 3',5'-monophosphate.
    Beavo JA; Hardman JG; Sutherland EW
    J Biol Chem; 1971 Jun; 246(12):3841-6. PubMed ID: 4327188
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulation of skeletal muscle phosphorylase phosphatase activity. II. Interconversions.
    Chelala CA; Torres HN
    Biochim Biophys Acta; 1970 Mar; 198(3):504-13. PubMed ID: 4314235
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphohydrolase activity of a Bacillus species.
    Szymona M; Zajac J
    Acta Microbiol Pol A; 1969; 1(2):109-16. PubMed ID: 4309351
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of skeletal muscle phosphorylase phosphatase activity. I. Kinetic properties of the active and inactive forms.
    Torres HN; Chelala CA
    Biochim Biophys Acta; 1970 Mar; 198(3):495-503. PubMed ID: 4314234
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies of phosphorus metabolism by isolated nuclei. XI. Evidence for a multiplicity of nucleolar nucleoside diphosphatases.
    Holbrook JP; Davidian NM; Penniall R
    Life Sci; 1967 Dec; 6(24):2669-76. PubMed ID: 4295441
    [No Abstract]   [Full Text] [Related]  

  • 12. Digestion of purine ribonucleotides by intestinal enzymes of the developing rat fetus.
    Wilson DW; Wilson HC
    Am J Physiol; 1965 Dec; 209(6):1155-8. PubMed ID: 4284906
    [No Abstract]   [Full Text] [Related]  

  • 13. Purine salvage networks in Giardia lamblia.
    Wang CC; Aldritt S
    J Exp Med; 1983 Nov; 158(5):1703-12. PubMed ID: 6605408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeling of alpha-P of nucleoside triphosphates by in vivo incorporation of 32P in rat liver.
    Landin RM; Moulé Y; Aye P
    Eur J Biochem; 1969 Nov; 11(1):68-72. PubMed ID: 4311071
    [No Abstract]   [Full Text] [Related]  

  • 15. Nucleotide concentrations in cellular tissues during potassium and magnesium deficiency.
    Southon S; Heaton FW
    Int J Biochem; 1983; 15(9):1143-7. PubMed ID: 6617957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight links between adenine and guanine nucleotide pools in mouse pancreatic islets: a study with mycophenolic acid.
    Detimary P; Xiao C; Henquin JC
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):467-71. PubMed ID: 9182705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intracellular adenine nucleotide binding site inhibits guanyly cyclase C by a guanine nucleotide-dependent mechanism.
    Parkinson SJ; Waldman SA
    Biochemistry; 1996 Mar; 35(10):3213-21. PubMed ID: 8605156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on ribonucleic acid synthesis in nuclei isolated from rat liver.
    Meisler AI; Tropp BE
    Biochim Biophys Acta; 1969 Feb; 174(2):476-90. PubMed ID: 4304808
    [No Abstract]   [Full Text] [Related]  

  • 19. Subcellular compartmentation of guanine nucleotides and functional relationships between the adenine and guanine nucleotide systems in isolated hepatocytes.
    Kleineke J; Düls C; Söling HD
    FEBS Lett; 1979 Nov; 107(1):198-202. PubMed ID: 499541
    [No Abstract]   [Full Text] [Related]  

  • 20. [Content of free adenine and guanine ribonucleotides in myocardium and skeletal muscles of the chicken and developing chick embryos].
    Lyzlova SN; Van Lien L
    Ukr Biokhim Zh; 1968; 40(5):492-5. PubMed ID: 5700772
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.