These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16568844)

  • 1. [Hight-temperature matrices to immobilize radioactive waste].
    Stefanovskiĭ SV; Lashenova TN; Ptashkin AG
    Med Tr Prom Ekol; 2006; (2):34-9. PubMed ID: 16568844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.
    Guerrero A; Goñi S; Allegro VR
    J Hazard Mater; 2009 Jun; 165(1-3):903-8. PubMed ID: 19056176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.
    Lumetta GJ; Braley JC; Peterson JM; Bryan SA; Levitskaia TG
    Environ Sci Technol; 2012 Jun; 46(11):6190-7. PubMed ID: 22571620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salts.
    Park HS; Cho IH; Eun HC; Kim IT; Cho YZ; Lee HS
    Environ Sci Technol; 2011 Mar; 45(5):1932-9. PubMed ID: 21288037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste.
    Guerrero A; Goñi S
    Waste Manag; 2002; 22(7):831-6. PubMed ID: 12365786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Processing of liquid radioactive waste by RADON Industrial Research Association].
    Panteleev VI; Dmitriev SA; Sobolev IA; Karlin IuV; Demkin VI; Adamovich DV; Slastennikov IuT; Il'in VA
    Med Tr Prom Ekol; 2006; (2):25-9. PubMed ID: 16568842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on immobilization of phosphate containing high level nuclear wastes within glass matrix--present status and future challenges.
    Sengupta P
    J Hazard Mater; 2012 Oct; 235-236():17-28. PubMed ID: 22902141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.
    Yang Y; Xiao Y; Voncken JH; Wilson N
    J Hazard Mater; 2008 Jun; 154(1-3):871-9. PubMed ID: 18077086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitrified metal finishing wastes I. Composition, density and chemical durability.
    Bingham PA; Hand RJ
    J Hazard Mater; 2005 Mar; 119(1-3):125-33. PubMed ID: 15752857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhenium solubility in borosilicate nuclear waste glass: implications for the processing and immobilization of technetium-99.
    McCloy JS; Riley BJ; Goel A; Liezers M; Schweiger MJ; Rodriguez CP; Hrma P; Kim DS; Lukens WW; Kruger AA
    Environ Sci Technol; 2012 Nov; 46(22):12616-22. PubMed ID: 23101883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.
    Montes-H G; Fritz B; Clement A; Michau N
    J Environ Manage; 2005 Oct; 77(1):35-46. PubMed ID: 15946786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitrification as an alternative to landfilling of tannery sewage sludge.
    Celary P; Sobik-Szołtysek J
    Waste Manag; 2014 Dec; 34(12):2520-7. PubMed ID: 25242604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Modyfying complex additives in technologies for cementing radioactive waste].
    Varlakov AP; Gorbunova OA; Barinov AS
    Med Tr Prom Ekol; 2006; (2):29-34. PubMed ID: 16568843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spanish LLW and MLW disposal: durability of cemented materials in (Na, K)Cl simulated radioactive liquid waste.
    Goñi S; Guerrero A; Hernández MS
    Waste Manag; 2001; 21(1):69-77. PubMed ID: 11150135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals.
    Alquier M; Kassim C; Bertron A; Sablayrolles C; Rafrafi Y; Albrecht A; Erable B
    J Environ Manage; 2014 Jan; 132():32-41. PubMed ID: 24275342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Management of metal chlorides in high temperature processes--application to the nuclear wastes treatment.
    Lemont F
    J Hazard Mater; 2012 Apr; 213-214():38-45. PubMed ID: 22365141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glass-ceramics from vitrified sewage sludge pyrolysis residues and recycled glasses.
    Bernardo E; Dal Maschio R
    Waste Manag; 2011 Nov; 31(11):2245-52. PubMed ID: 21802272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Disposition of radioactive organic liquid waste by incineration--pretreatment for incineration by demulsification].
    Kimura S; Kondo Y
    Radioisotopes; 1984 Nov; 33(11):808-11. PubMed ID: 6522662
    [No Abstract]   [Full Text] [Related]  

  • 20. Characteristics of solidified products containing radioactive molten salt waste.
    Park HS; Kim IT; Cho YZ; Eun HC; Kim JH
    Environ Sci Technol; 2007 Nov; 41(21):7536-42. PubMed ID: 18044538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.