These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16569198)

  • 1. Why ribose was selected as the sugar component of nucleic acids.
    Banfalvi G
    DNA Cell Biol; 2006 Mar; 25(3):189-96. PubMed ID: 16569198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of duplex stabilizing properties of 2'-fluorinated nucleic acid analogues with furanose and non-furanose sugar rings.
    Østergaard ME; Dwight T; Berdeja A; Swayze EE; Jung ME; Seth PP
    J Org Chem; 2014 Sep; 79(18):8877-81. PubMed ID: 25137618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereochemical studies on nucleic acid analogues. I. Conformations of alpha-nucleosides and alpha-nucleotides: interconversion of sugar puckers via O4'-exo.
    Latha YS; Yathindra N
    Biopolymers; 1992 Mar; 32(3):249-69. PubMed ID: 1581546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimal requirements for molecular information transfer.
    Schwartz AW
    Adv Space Res; 1986; 6(11):23-7. PubMed ID: 11537226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids.
    Svozil D; Sponer JE; Marchan I; Pérez A; Cheatham TE; Forti F; Luque FJ; Orozco M; Sponer J
    J Phys Chem B; 2008 Jul; 112(27):8188-97. PubMed ID: 18558755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference in conformational diversity between nucleic acids with a six-membered 'sugar' unit and natural 'furanose' nucleic acids.
    Lescrinier E; Froeyen M; Herdewijn P
    Nucleic Acids Res; 2003 Jun; 31(12):2975-89. PubMed ID: 12799423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of a S-glycosidic linkage into a glyconucleoside changes the conformational preference of both furanose sugars.
    Buckingham J; Brazier JA; Fisher J; Cosstick R
    Carbohydr Res; 2007 Jan; 342(1):16-22. PubMed ID: 17145047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on the factors controlling the stability of the borate complexes of ribose, arabinose, lyxose, and xylose.
    Sponer JE; Sumpter BG; Leszczynski J; Sponer J; Fuentes-Cabrera M
    Chemistry; 2008; 14(32):9990-8. PubMed ID: 18810746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereochemistry of 2',5' nucleic acids and their constituents.
    Premraj BJ; Yathindra N
    J Biomol Struct Dyn; 1998 Oct; 16(2):313-28. PubMed ID: 9833670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based design of a highly constrained nucleic acid analogue: improved duplex stabilization by restricting sugar pucker and torsion angle γ.
    Hanessian S; Schroeder BR; Giacometti RD; Merner BL; Ostergaard M; Swayze EE; Seth PP
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11242-5. PubMed ID: 22915274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for the determination of furanose ring coordinates in its pseudorotation circuit for different amplitudes of pucker.
    Merritt EA; Sundaralingam M
    J Biomol Struct Dyn; 1985 Dec; 3(3):559-78. PubMed ID: 3917038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The geometry of the sugar radicals of nucleic acids].
    Landau MA
    Izv Akad Nauk SSSR Biol; 1990; (5):649-56. PubMed ID: 2125607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of life. A simpler nucleic acid.
    Orgel L
    Science; 2000 Nov; 290(5495):1306-7. PubMed ID: 11185405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dimensions and shapes of the furanose rings in nucleic acids.
    Arnott S; Hukins DW
    Biochem J; 1972 Nov; 130(2):453-65. PubMed ID: 4664573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab-initio and experimental study of pentose sugar dehydration mechanism in the gas phase.
    Antonini L; Garzoli S; Ricci A; Troiani A; Salvitti C; Giacomello P; Ragno R; Patsilinakos A; Di Rienzo B; Pepi F
    Carbohydr Res; 2018 Mar; 458-459():19-28. PubMed ID: 29428483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical etiology of nucleic acid structure: comparing pentopyranosyl-(2'-->4') oligonucleotides with RNA.
    Beier M; Reck F; Wagner T; Krishnamurthy R; Eschenmoser A
    Science; 1999 Jan; 283(5402):699-703. PubMed ID: 9924032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective stabilization of ribose by borate.
    Furukawa Y; Horiuchi M; Kakegawa T
    Orig Life Evol Biosph; 2013 Oct; 43(4-5):353-61. PubMed ID: 24352855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-2-deoxyribose and D-arabinose, but not D-ribose, stabilize the cytosine tetrad (i-DNA) structure.
    Robidoux S; Damha MJ
    J Biomol Struct Dyn; 1997 Dec; 15(3):529-35. PubMed ID: 9439999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ultraviolet light (PRK-2) on pentoses in the presence of various minerals.
    Khenokh MA; Nikolayeva MV
    Life Sci Space Res; 1970; 8():82-9. PubMed ID: 12664922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical etiology of nucleic acid structure: the pentulofuranosyl oligonucleotide systems: the (1'→3')-β-L-ribulo, (4'→3')-α-L-xylulo, and (1'→3')-α-L-xylulo nucleic acids.
    Stoop M; Meher G; Karri P; Krishnamurthy R
    Chemistry; 2013 Nov; 19(45):15336-45. PubMed ID: 24150882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.