BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 16569411)

  • 1. Determination of solute partition behavior with room-temperature ionic liquid based micellar gas-liquid chromatography stationary phases using the pseudophase model.
    Lantz AW; Pino V; Anderson JL; Armstrong DW
    J Chromatogr A; 2006 May; 1115(1-2):217-24. PubMed ID: 16569411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds.
    Baltazar QQ; Leininger SK; Anderson JL
    J Chromatogr A; 2008 Feb; 1182(1):119-27. PubMed ID: 18207157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography.
    Revelli AL; Mutelet F; Jaubert JN
    J Chromatogr A; 2009 Jun; 1216(23):4775-86. PubMed ID: 19414174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention mechanism and implications for selectivity for a group of dihydropyridines in ionic micellar liquid chromatography.
    Saz JM; Marina ML
    J Chromatogr A; 1994 Dec; 687(1):1-12. PubMed ID: 7849985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethanesulfonate for gas chromatography.
    Lenca N; Poole CF
    J Chromatogr A; 2018 Jul; 1559():164-169. PubMed ID: 28619588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Search of non-ionic surfactants suitable for micellar liquid chromatography.
    Peris-García E; Rodríguez-Martínez J; Baeza-Baeza JJ; García-Alvarez-Coque MC; Ruiz-Angel MJ
    Anal Bioanal Chem; 2018 Aug; 410(20):5043-5057. PubMed ID: 29922861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and evaluation of a novel bonded imidazolium ionic liquid as stationary phase for gas chromatography.
    Dai JL; Zhao LH; Shi JH
    J Sep Sci; 2017 Jul; 40(13):2769-2778. PubMed ID: 28481044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography.
    Armstrong DW; He L; Liu YS
    Anal Chem; 1999 Sep; 71(17):3873-6. PubMed ID: 10489532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention mechanisms in micellar liquid chromatography.
    Ruiz-Angel MJ; Carda-Broch S; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2009 Mar; 1216(10):1798-814. PubMed ID: 18838142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the interactions between phenolic compounds and micellar media using micellar solid-phase microextraction/gas chromatography.
    Pino V; Conde FJ; Ayala JH; Afonso AM; González V
    J Chromatogr A; 2005 Dec; 1099(1-2):64-74. PubMed ID: 16330273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical selectivity in micellar electrokinetic chromatography: characterization of solute-micelle interactions for classification of surfactants.
    Yang S; Khaledi MG
    Anal Chem; 1995 Feb; 67(3):499-510. PubMed ID: 7893000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of stationary-phase pore size on retention behavior in micellar liquid chromatography.
    McCormick TJ; Foley JP; Riley CM; Lloyd DK
    Anal Chem; 2000 Jan; 72(2):294-301. PubMed ID: 10658322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a dicationic imidazolium-based ionic liquid as a gas chromatography stationary phase.
    Heydar KT; Azadeh AM; Yaghoubnejad S; Ghonouei N; Sharifi A; Rahnama MA
    J Chromatogr A; 2017 Aug; 1511():92-100. PubMed ID: 28689579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the solvation properties of functionalized ionic liquids with varied cation/anion composition using the solvation parameter model.
    Twu P; Zhao Q; Pitner WR; Acree WE; Baker GA; Anderson JL
    J Chromatogr A; 2011 Aug; 1218(31):5311-8. PubMed ID: 21683957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation performance of guanidinium-based ionic liquids as stationary phases for gas chromatography.
    Qiao L; Lu K; Qi M; Fu R
    J Chromatogr A; 2013 Feb; 1276():112-9. PubMed ID: 23313301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-stability ionic liquids. A new class of stationary phases for gas chromatography.
    Anderson JL; Armstrong DW
    Anal Chem; 2003 Sep; 75(18):4851-8. PubMed ID: 14674463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface adsorption and aggregate formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6).
    Misono T; Sakai H; Sakai K; Abe M; Inoue T
    J Colloid Interface Sci; 2011 Jun; 358(2):527-33. PubMed ID: 21481888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention characteristics of organic compounds on molten salt and ionic liquid-based gas chromatography stationary phases.
    Yao C; Anderson JL
    J Chromatogr A; 2009 Mar; 1216(10):1658-712. PubMed ID: 19131069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laterally attached liquid crystalline polymers as stationary phases in reversed-phase high-performance liquid chromatography. V. Study of retention mechanism using linear solvation energy relationships.
    Gritti F; Félix G; Achard MF; Hardouin F
    J Chromatogr A; 2001 Jul; 922(1-2):51-61. PubMed ID: 11486891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COSMO-RS for the prediction of the retention behavior in micellar liquid chromatography based on partition coefficients of non-dissociated and dissociated solutes.
    Mehling T; Kloss L; Mushardt H; Ingram T; Smirnova I
    J Chromatogr A; 2013 Jan; 1273():66-72. PubMed ID: 23273634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.