These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16569422)

  • 1. Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA.
    Han FX; Su Y; Monts DL; Waggoner CA; Plodinec MJ
    Sci Total Environ; 2006 Sep; 368(2-3):753-68. PubMed ID: 16569422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury contamination in the riparian zones along the East Fork Poplar Creek at Oak Ridge.
    Pant P; Allen M; Tansel B
    Ecotoxicol Environ Saf; 2011 Mar; 74(3):467-72. PubMed ID: 20965567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of mercury on trees and their mycorrhizal fungi.
    Jean-Philippe SR; Franklin JA; Buckley DS; Hughes K
    Environ Pollut; 2011 Oct; 159(10):2733-9. PubMed ID: 21737192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method.
    Liu G; Cabrera J; Allen M; Cai Y
    Sci Total Environ; 2006 Oct; 369(1-3):384-92. PubMed ID: 16904164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia).
    Gosar M; Sajn R; Biester H
    Sci Total Environ; 2006 Oct; 369(1-3):150-62. PubMed ID: 16764912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from Oak Ridge.
    Pant P; Allen M; Tansel B
    Int J Phytoremediation; 2011 Feb; 13(2):168-76. PubMed ID: 21598784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury fractionation in contaminated soils from the Idrija mercury mine region.
    Kocman D; Horvat M; Kotnik J
    J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata).
    Su Y; Han FX; Chen J; Sridhar BB; Monts DL
    Int J Phytoremediation; 2008; 10(6):547-60. PubMed ID: 19260232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang County, Guizhou, China: Part 2. Mercury contaminations to soil and crop.
    Feng X; Li G; Qiu G
    Sci Total Environ; 2006 Sep; 368(1):47-55. PubMed ID: 16223519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of soils from an industrial complex contaminated with elemental mercury.
    Miller CL; Watson DB; Lester BP; Lowe KA; Pierce EM; Liang L
    Environ Res; 2013 Aug; 125():20-9. PubMed ID: 23809204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.
    Llanos W; Kocman D; Higueras P; Horvat M
    J Environ Monit; 2011 Dec; 13(12):3460-8. PubMed ID: 22037967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of mercury species in soils by HPLC-ICP-MS and measurement of fraction removed by diffusive gradient in thin films.
    Cattani I; Spalla S; Beone GM; Del Re AA; Boccelli R; Trevisan M
    Talanta; 2008 Feb; 74(5):1520-6. PubMed ID: 18371812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing arsenic accumulation by Pteris vittata: a comparative field study at two sites.
    Wei CY; Sun X; Wang C; Wang WY
    Environ Pollut; 2006 Jun; 141(3):488-93. PubMed ID: 16236410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.
    Neculita CM; Zagury GJ; Deschênes L
    J Environ Qual; 2005; 34(1):255-62. PubMed ID: 15647556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury uptake by Silene vulgaris grown on contaminated spiked soils.
    Pérez-Sanz A; Millán R; Sierra MJ; Alarcón R; García P; Gil-Díaz M; Vazquez S; Lobo MC
    J Environ Manage; 2012 Mar; 95 Suppl():S233-7. PubMed ID: 20708330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area.
    Moreno-Jiménez E; Gamarra R; Carpena-Ruiz RO; Millán R; Peñalosa JM; Esteban E
    Chemosphere; 2006 Jun; 63(11):1969-73. PubMed ID: 16293291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A; Wenke A; Biester H
    Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of mercury speciation and fractionation on bioaccessibility in soils.
    Zagury GJ; Bedeaux C; Welfringer B
    Arch Environ Contam Toxicol; 2009 Apr; 56(3):371-9. PubMed ID: 18704252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.