These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16569581)

  • 1. Monitoring erythrocytes in a microchip channel that narrows uniformly: towards an improved microfluidic-based mimic of the microcirculation.
    Price AK; Martin RS; Spence DM
    J Chromatogr A; 2006 Apr; 1111(2):220-7. PubMed ID: 16569581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes.
    Moehlenbrock MJ; Price AK; Martin RS
    Analyst; 2006 Aug; 131(8):930-7. PubMed ID: 17028727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels.
    Price AK; Fischer DJ; Martin RS; Spence DM
    Anal Chem; 2004 Aug; 76(16):4849-55. PubMed ID: 15307797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes.
    Faris A; Spence DM
    Analyst; 2008 May; 133(5):678-82. PubMed ID: 18427692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel multi-depth microfluidic chip for single cell analysis.
    Yue S; Xue-Feng Y
    J Chromatogr A; 2006 Jun; 1117(2):228-33. PubMed ID: 16620849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an on-chip injector for microchip-based flow analyses using laminar flow.
    Moehlenbrock MJ; Martin RS
    Lab Chip; 2007 Nov; 7(11):1589-96. PubMed ID: 17960290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies.
    Lima R; Oliveira MS; Ishikawa T; Kaji H; Tanaka S; Nishizawa M; Yamaguchi T
    Biofabrication; 2009 Sep; 1(3):035005. PubMed ID: 20811109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An altered oxidant defense system in red blood cells affects their ability to release nitric oxide-stimulating ATP.
    Carroll J; Raththagala M; Subasinghe W; Baguzis S; D'amico Oblak T; Root P; Spence D
    Mol Biosyst; 2006 Jun; 2(6-7):305-11. PubMed ID: 16880949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.
    Sprague RS; Stephenson AH; Ellsworth ML; Keller C; Lonigro AJ
    Exp Biol Med (Maywood); 2001 May; 226(5):434-9. PubMed ID: 11393171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels.
    Drochon A
    Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo.
    Sprung R; Sprague R; Spence D
    Anal Chem; 2002 May; 74(10):2274-8. PubMed ID: 12038751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel.
    Fujiwara H; Ishikawa T; Lima R; Matsuki N; Imai Y; Kaji H; Nishizawa M; Yamaguchi T
    J Biomech; 2009 May; 42(7):838-43. PubMed ID: 19268948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time monitoring of intracellular calcium dynamic mobilization of a single cardiomyocyte in a microfluidic chip pertaining to drug discovery.
    Li X; Huang J; Tibbits GF; Li PC
    Electrophoresis; 2007 Dec; 28(24):4723-33. PubMed ID: 18072214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic fluid control in two-dimensional planar microfluidic devices.
    Lerch MA; Jacobson SC
    Anal Chem; 2007 Oct; 79(19):7485-91. PubMed ID: 17718538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategy for repetitive pinched injections on a microfluidic device.
    Thomas CD; Jacobson SC; Ramsey JM
    Anal Chem; 2004 Oct; 76(20):6053-7. PubMed ID: 15481953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release.
    Selimovic A; Erkal JL; Spence DM; Martin RS
    Analyst; 2014 Nov; 139(22):5686-94. PubMed ID: 25105251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro quality of red blood cells (RBCs) collected by multicomponent apheresis compared to manually collected RBCs during 49 days of storage.
    Picker SM; Radojska SM; Gathof BS
    Transfusion; 2007 Apr; 47(4):687-96. PubMed ID: 17381628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.