These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 16569821)
1. Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis. Flatman RH; Eustaquio A; Li SM; Heide L; Maxwell A Antimicrob Agents Chemother; 2006 Apr; 50(4):1136-42. PubMed ID: 16569821 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. Alt S; Mitchenall LA; Maxwell A; Heide L J Antimicrob Chemother; 2011 Sep; 66(9):2061-9. PubMed ID: 21693461 [TBL] [Abstract][Full Text] [Related]
3. Biological activities of novel gyrase inhibitors of the aminocoumarin class. Anderle C; Stieger M; Burrell M; Reinelt S; Maxwell A; Page M; Heide L Antimicrob Agents Chemother; 2008 Jun; 52(6):1982-90. PubMed ID: 18347114 [TBL] [Abstract][Full Text] [Related]
4. New aminocoumarin antibiotics as gyrase inhibitors. Heide L Int J Med Microbiol; 2014 Jan; 304(1):31-6. PubMed ID: 24079980 [TBL] [Abstract][Full Text] [Related]
5. Effects of novobiocin, coumermycin A1, clorobiocin, and their analogs on Escherichia coli DNA gyrase and bacterial growth. Hooper DC; Wolfson JS; McHugh GL; Winters MB; Swartz MN Antimicrob Agents Chemother; 1982 Oct; 22(4):662-71. PubMed ID: 6295263 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin derivatives produced by mutasynthesis. Galm U; Heller S; Shapiro S; Page M; Li SM; Heide L Antimicrob Agents Chemother; 2004 Apr; 48(4):1307-12. PubMed ID: 15047534 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of aminocoumarins: inactivation of the methyltransferase gene cloP and generation of new clorobiocin derivatives in a heterologous host. Freitag A; Rapp H; Heide L; Li SM Chembiochem; 2005 Aug; 6(8):1411-8. PubMed ID: 15977275 [TBL] [Abstract][Full Text] [Related]
8. Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. Eustáquio AS; Gust B; Luft T; Li SM; Chater KF; Heide L Chem Biol; 2003 Mar; 10(3):279-88. PubMed ID: 12670542 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Bellon S; Parsons JD; Wei Y; Hayakawa K; Swenson LL; Charifson PS; Lippke JA; Aldape R; Gross CH Antimicrob Agents Chemother; 2004 May; 48(5):1856-64. PubMed ID: 15105144 [TBL] [Abstract][Full Text] [Related]
10. Design, synthesis, and antibacterial evaluation of new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV. Hofny HA; Mohamed MFA; Gomaa HAM; Abdel-Aziz SA; Youssif BGM; El-Koussi NA; Aboraia AS Bioorg Chem; 2021 Jul; 112():104920. PubMed ID: 33910078 [TBL] [Abstract][Full Text] [Related]
11. Resistance genes of aminocoumarin producers: two type II topoisomerase genes confer resistance against coumermycin A1 and clorobiocin. Schmutz E; Mühlenweg A; Li SM; Heide L Antimicrob Agents Chemother; 2003 Mar; 47(3):869-77. PubMed ID: 12604514 [TBL] [Abstract][Full Text] [Related]
12. New 1,2,4-oxadiazole/pyrrolidine hybrids as topoisomerase IV and DNA gyrase inhibitors with promising antibacterial activity. Frejat FOA; Cao Y; Wang L; Zhai H; Abdelazeem AH; Gomaa HAM; Youssif BGM; Wu C Arch Pharm (Weinheim); 2022 Jul; 355(7):e2100516. PubMed ID: 35363388 [TBL] [Abstract][Full Text] [Related]
13. Methods to assay inhibitors of DNA gyrase and topoisomerase IV activities. Fisher LM; Pan XS Methods Mol Med; 2008; 142():11-23. PubMed ID: 18437302 [TBL] [Abstract][Full Text] [Related]
14. New aminocoumarin antibiotics from genetically engineered Streptomyces strains. Li SM; Heide L Curr Med Chem; 2005; 12(4):419-27. PubMed ID: 15720250 [TBL] [Abstract][Full Text] [Related]
15. A metabolomics perspective on clorobiocin biosynthesis: discovery of bromobiocin and novel derivatives through LC-MS Janzing NBM; Niehoff M; Sander W; Senges CHR; Schäkermann S; Bandow JE Microbiol Spectr; 2024 Jul; 12(7):e0042324. PubMed ID: 38864648 [TBL] [Abstract][Full Text] [Related]
16. Combinatorial biosynthesis, metabolic engineering and mutasynthesis for the generation of new aminocoumarin antibiotics. Heide L; Gust B; Anderle C; Li SM Curr Top Med Chem; 2008; 8(8):667-79. PubMed ID: 18473891 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic, and synthetic approach. Galm U; Dessoy MA; Schmidt J; Wessjohann LA; Heide L Chem Biol; 2004 Feb; 11(2):173-83. PubMed ID: 15123279 [TBL] [Abstract][Full Text] [Related]
18. Installation of the pyrrolyl-2-carboxyl pharmacophore by CouN1 and CouN7 in the late biosynthetic steps of the aminocoumarin antibiotics clorobiocin and coumermycin A1. Garneau-Tsodikova S; Stapon A; Kahne D; Walsh CT Biochemistry; 2006 Jul; 45(28):8568-78. PubMed ID: 16834331 [TBL] [Abstract][Full Text] [Related]
19. Chemoenzymatic formation of novel aminocoumarin antibiotics by the enzymes CouN1 and CouN7. Fridman M; Balibar CJ; Lupoli T; Kahne D; Walsh CT; Garneau-Tsodikova S Biochemistry; 2007 Jul; 46(28):8462-71. PubMed ID: 17580964 [TBL] [Abstract][Full Text] [Related]
20. Dual inhibition of Staphylococcus aureus DNA gyrase and topoisomerase IV activity by phenylalanine-derived (Z)-5-arylmethylidene rhodanines. Werner MM; Patel BA; Talele TT; Ashby CR; Li Z; Zauhar RJ Bioorg Med Chem; 2015 Sep; 23(18):6125-37. PubMed ID: 26320664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]