These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 16569828)

  • 1. Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance.
    Seidl K; Stucki M; Ruegg M; Goerke C; Wolz C; Harris L; Berger-Bächi B; Bischoff M
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1183-94. PubMed ID: 16569828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated and differential control of aureolysin (aur) and serine protease (sspA) transcription in Staphylococcus aureus by sarA, rot and agr (RNAIII).
    Oscarsson J; Tegmark-Wisell K; Arvidson S
    Int J Med Microbiol; 2006 Oct; 296(6):365-80. PubMed ID: 16782403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae.
    Iyer R; Baliga NS; Camilli A
    J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repression of Staphylococcus aureus SrrAB using inducible antisense srrA alters growth and virulence factor transcript levels.
    Pragman AA; Ji Y; Schlievert PM
    Biochemistry; 2007 Jan; 46(1):314-21. PubMed ID: 17198402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth phase-dependent regulation of the global virulence regulator Rot in clinical isolates of Staphylococcus aureus.
    Jelsbak L; Hemmingsen L; Donat S; Ohlsen K; Boye K; Westh H; Ingmer H; Frees D
    Int J Med Microbiol; 2010 Apr; 300(4):229-36. PubMed ID: 19665927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of exoprotein gene expression by the Staphylococcus aureus cvfB gene.
    Matsumoto Y; Kaito C; Morishita D; Kurokawa K; Sekimizu K
    Infect Immun; 2007 Apr; 75(4):1964-72. PubMed ID: 17283102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of virulence-associated gene transcripts in epidemic methicillin resistant Staphylococcus aureus by real-time PCR.
    Sabersheikh S; Saunders NA
    Mol Cell Probes; 2004 Feb; 18(1):23-31. PubMed ID: 15036366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar-responsive gene expression and the agr system are required for colony spreading in Staphylococcus aureus.
    Ueda T; Kaito C; Omae Y; Sekimizu K
    Microb Pathog; 2011 Sep; 51(3):178-85. PubMed ID: 21514374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network.
    Frees D; Sørensen K; Ingmer H
    Infect Immun; 2005 Dec; 73(12):8100-8. PubMed ID: 16299304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT; Buist G; Kok J; Kuipers OP
    J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens.
    Varga J; Stirewalt VL; Melville SB
    J Bacteriol; 2004 Aug; 186(16):5221-9. PubMed ID: 15292123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel DNA binding protein SarZ contributes to virulence in Staphylococcus aureus.
    Kaito C; Morishita D; Matsumoto Y; Kurokawa K; Sekimizu K
    Mol Microbiol; 2006 Dec; 62(6):1601-17. PubMed ID: 17087772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sigmaB and the sigmaB-dependent arlRS and yabJ-spoVG loci affect capsule formation in Staphylococcus aureus.
    Meier S; Goerke C; Wolz C; Seidl K; Homerova D; Schulthess B; Kormanec J; Berger-Bächi B; Bischoff M
    Infect Immun; 2007 Sep; 75(9):4562-71. PubMed ID: 17635871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):309-14. PubMed ID: 11931563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CcpA Affects Infectivity of
    Bischoff M; Wonnenberg B; Nippe N; Nyffenegger-Jann NJ; Voss M; Beisswenger C; Sunderkötter C; Molle V; Dinh QT; Lammert F; Bals R; Herrmann M; Somerville GA; Tschernig T; Gaupp R
    Front Cell Infect Microbiol; 2017; 7():172. PubMed ID: 28536677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis.
    Faires N; Tobisch S; Bachem S; Martin-Verstraete I; Hecker M; Stülke J
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):141-8. PubMed ID: 10941796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis.
    Willenborg J; Fulde M; de Greeff A; Rohde M; Smith HE; Valentin-Weigand P; Goethe R
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1823-1833. PubMed ID: 21349980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose uptake pathway-specific regulation of synthesis of neotrehalosadiamine, a novel autoinducer produced in Bacillus subtilis.
    Inaoka T; Ochi K
    J Bacteriol; 2007 Jan; 189(1):65-75. PubMed ID: 17056753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subinhibitory concentrations of phenyl lactic acid interfere with the expression of virulence factors in Staphylococcus aureus and Pseudomonas aeruginosa clinical strains.
    Chifiriuc MC; Diţu LM; Banu O; Bleotu C; Drăcea O; Bucur M; Larion C; Israil AM; Lazăr V
    Roum Arch Microbiol Immunol; 2009; 68(1):27-33. PubMed ID: 19507624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.