BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16569913)

  • 1. Proteomics approaches to study the redox state of cysteine-containing proteins.
    Camerini S; Polci ML; Bachi A
    Ann Ist Super Sanita; 2005; 41(4):451-7. PubMed ID: 16569913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry.
    Chen SH; Hsu JL; Lin FS
    Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved protein sequence coverage by on resin deglycosylation and cysteine modification for biomarker discovery.
    Kamada H; Fugmann T; Neri D; Roesli C
    Proteomics; 2009 Feb; 9(3):783-7. PubMed ID: 19137555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical 'omics' approaches for understanding protein cysteine oxidation in biology.
    Leonard SE; Carroll KS
    Curr Opin Chem Biol; 2011 Feb; 15(1):88-102. PubMed ID: 21130680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins.
    Pasquarello C; Sanchez JC; Hochstrasser DF; Corthals GL
    Rapid Commun Mass Spectrom; 2004; 18(1):117-27. PubMed ID: 14689568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to identify proteins modified by nitric oxide: the HIS-TAG switch method.
    Camerini S; Polci ML; Restuccia U; Usuelli V; Malgaroli A; Bachi A
    J Proteome Res; 2007 Aug; 6(8):3224-31. PubMed ID: 17629318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of bovine serum albumin: identification of oxidation products and structural modifications.
    Guedes S; Vitorino R; Domingues R; Amado F; Domingues P
    Rapid Commun Mass Spectrom; 2009 Aug; 23(15):2307-15. PubMed ID: 19575405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of redox-dependent changes using cysteine-labeling 2D DIGE.
    Chan HL; Sinclair J; Timms JF
    Methods Mol Biol; 2012; 854():113-28. PubMed ID: 22311756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of protein S-nitrosylation.
    Torta F; Usuelli V; Malgaroli A; Bachi A
    Proteomics; 2008 Nov; 8(21):4484-94. PubMed ID: 18846506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and proteomic identification of S-nitrosylated proteins in endothelial cells.
    Martínez-Ruiz A; Lamas S
    Arch Biochem Biophys; 2004 Mar; 423(1):192-9. PubMed ID: 14871481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics studies of post-translational modifications in plants.
    Kwon SJ; Choi EY; Choi YJ; Ahn JH; Park OK
    J Exp Bot; 2006; 57(7):1547-51. PubMed ID: 16551683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomics by fluorescent labeling of cysteine residues using a set of two cyanine-based or three rhodamine-based dyes.
    Volke D; Hoffmann R
    Electrophoresis; 2008 Nov; 29(22):4516-26. PubMed ID: 19035404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the redox state and secondary structure of cysteine residues in proteins using NMR chemical shifts.
    Wang CC; Chen JH; Yin SH; Chuang WJ
    Proteins; 2006 Apr; 63(1):219-26. PubMed ID: 16444707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel pyrimidine-based stable-isotope labeling reagent and its application to quantitative analysis using matrix-assisted laser desorption/ionization mass spectrometry.
    Zhang J; Zhang L; Zhou Y; Guo YL
    J Mass Spectrom; 2007 Nov; 42(11):1514-21. PubMed ID: 17618528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-catalyzed oxidation of protein-bound dopamine.
    Akagawa M; Ishii Y; Ishii T; Shibata T; Yotsu-Yamashita M; Suyama K; Uchida K
    Biochemistry; 2006 Dec; 45(50):15120-8. PubMed ID: 17154550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid and selective mass spectrometric method for the identification of nitrated proteins.
    Amoresano A; Chiappetta G; Pucci P; Marino G
    Methods Mol Biol; 2008; 477():15-29. PubMed ID: 19082935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of cysteine-containing peptides from tryptic digests using a quaternary amine tag.
    Ren D; Julka S; Inerowicz HD; Regnier FE
    Anal Chem; 2004 Aug; 76(15):4522-30. PubMed ID: 15283597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research.
    Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.