These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 1656992)

  • 1. Xanthine oxidase-catalyzed reduction of estrogen quinones to semiquinones and hydroquinones.
    Roy D; Kalyanaraman B; Liehr JG
    Biochem Pharmacol; 1991 Sep; 42(8):1627-31. PubMed ID: 1656992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporary decrease in renal quinone reductase activity induced by chronic administration of estradiol to male Syrian hamsters. Increased superoxide formation by redox cycling of estrogen.
    Roy D; Liehr JG
    J Biol Chem; 1988 Mar; 263(8):3646-51. PubMed ID: 2831197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of metabolic activation and DNA adduct formation by the human carcinogen diethylstilbestrol: the defining link to natural estrogens.
    Saeed M; Rogan E; Cavalieri E
    Int J Cancer; 2009 Mar; 124(6):1276-84. PubMed ID: 19089919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of semiquinone free radicals formed from stilbene catechol estrogens. An ESR spin stabilization and spin trapping study.
    Kalyanaraman B; Sealy RC; Liehr JG
    J Biol Chem; 1989 Jul; 264(19):11014-9. PubMed ID: 2544580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysis of the oxidation and reduction reactions of steroid and stilbene estrogens by nuclear enzymes.
    Roy D; Thomas RD
    Arch Biochem Biophys; 1994 Dec; 315(2):310-6. PubMed ID: 7986073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen.
    Komiyama T; Kikuchi T; Sugiura Y
    J Pharmacobiodyn; 1986 Aug; 9(8):651-64. PubMed ID: 3023600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine.
    Ross D; Cotgreave I; Moldéus P
    Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of fatty acid hydroperoxide cofactors in the cytochrome P450-mediated oxidation of estrogens to quinone metabolites. Role and balance of lipid peroxides during estrogen-induced carcinogenesis.
    Wang MY; Liehr JG
    J Biol Chem; 1994 Jan; 269(1):284-91. PubMed ID: 8276808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative determination of the superoxide radicals in the xanthine oxidase reaction by measurement of the electron spin resonance signal of the superoxide radical spin adduct of 5,5-dimethyl-1-pyrroline-1-oxide.
    Ueno I; Kohno M; Yoshihira K; Hirono I
    J Pharmacobiodyn; 1984 Aug; 7(8):563-9. PubMed ID: 6096529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of EPR spin trapping and cytochrome c reduction techniques for the measurement of superoxide anions.
    Sanders SP; Harrison SJ; Kuppusamy P; Sylvester JT; Zweier JL
    Free Radic Biol Med; 1994 Jun; 16(6):753-61. PubMed ID: 8070678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Redox-Based Superoxide Generation System Using Quinone/Quinone Reductase.
    Singh SK; Husain SM
    Chembiochem; 2018 Aug; 19(15):1657-1663. PubMed ID: 29790650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P-450-mediated redox cycling of estrogens.
    Liehr JG; Ulubelen AA; Strobel HW
    J Biol Chem; 1986 Dec; 261(36):16865-70. PubMed ID: 3782146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of superoxide anions with melanins: electron spin resonance and spin trapping studies.
    Korytowski W; Kalyanaraman B; Menon IA; Sarna T; Sealy RC
    Biochim Biophys Acta; 1986 Jun; 882(2):145-53. PubMed ID: 3011111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling of potential antitumor aziridinyl quinones.
    Lusthof KJ; de Mol NJ; Richter W; Janssen LH; Butler J; Hoey BM; Verboom W; Reinhoudt DN
    Free Radic Biol Med; 1992 Dec; 13(6):599-608. PubMed ID: 1334033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiquinone radicals from oxygenated polychlorinated biphenyls: electron paramagnetic resonance studies.
    Song Y; Wagner BA; Lehmler HJ; Buettner GR
    Chem Res Toxicol; 2008 Jul; 21(7):1359-67. PubMed ID: 18549251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant properties of natural hydroquinones from the marine colonial tunicate Aplidium californicum.
    Cotelle N; Moreau S; Bernier JL; Catteau JP; Hénichart JP
    Free Radic Biol Med; 1991; 11(1):63-8. PubMed ID: 1657734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.