These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16570330)

  • 1. Practical synthesis of amides from in situ generated copper(I) acetylides and sulfonyl azides.
    Cassidy MP; Raushel J; Fokin VV
    Angew Chem Int Ed Engl; 2006 May; 45(19):3154-7. PubMed ID: 16570330
    [No Abstract]   [Full Text] [Related]  

  • 2. Glycosylated N-sulfonylamidines: highly efficient copper-catalyzed multicomponent reaction with sugar alkynes, sulfonyl azides, and amines.
    Mandal S; Gauniyal HM; Pramanik K; Mukhopadhyay B
    J Org Chem; 2007 Dec; 72(25):9753-6. PubMed ID: 17985923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoramidite accelerated copper(i)-catalyzed [3 + 2] cycloadditions of azides and alkynes.
    Campbell-Verduyn LS; Mirfeizi L; Dierckx RA; Elsinga PH; Feringa BL
    Chem Commun (Camb); 2009 Apr; (16):2139-41. PubMed ID: 19360172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: dichotomy via a common pathway.
    Yoo EJ; Ahlquist M; Bae I; Sharpless KB; Fokin VV; Chang S
    J Org Chem; 2008 Jul; 73(14):5520-8. PubMed ID: 18557650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-catalyzed aerobic oxidative amidation of terminal alkynes: efficient synthesis of ynamides.
    Hamada T; Ye X; Stahl SS
    J Am Chem Soc; 2008 Jan; 130(3):833-5. PubMed ID: 18166058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient approach to 4-sulfonamidoquinolines via copper(I)-catalyzed cascade reaction of sulfonyl azides with alkynyl imines.
    Cheng G; Cui X
    Org Lett; 2013 Apr; 15(7):1480-3. PubMed ID: 23521106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-mediated amidation of alkenylzirconocenes with acyl azides: formation of enamides.
    Liu H; Zhou Y; Yan X; Chen C; Liu Q; Xi C
    Org Lett; 2013 Oct; 15(20):5174-7. PubMed ID: 24083640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper(I)-catalyzed cycloaddition of silver acetylides and azides: incorporation of volatile acetylenes into the triazole core.
    Proietti Silvestri I; Andemarian F; Khairallah GN; Yap SW; Quach T; Tsegay S; Williams CM; O'Hair RA; Donnelly PS; Williams SJ
    Org Biomol Chem; 2011 Sep; 9(17):6082-8. PubMed ID: 21748192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu-catalyzed conversion of propargyl acetates to E-α,β-unsaturated amides via ketenimine formation with sulfonyl azides.
    Kumar YK; Ranjith Kumar G; Reddy MS
    J Org Chem; 2014 Jan; 79(2):823-8. PubMed ID: 24344764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient oxidative alkyne homocoupling catalyzed by a monomeric dicopper-substituted silicotungstate.
    Kamata K; Yamaguchi S; Kotani M; Yamaguchi K; Mizuno N
    Angew Chem Int Ed Engl; 2008; 47(13):2407-10. PubMed ID: 18286558
    [No Abstract]   [Full Text] [Related]  

  • 11. Three-component reaction of propargyl amines, sulfonyl azides, and alkynes: one-pot synthesis of tetrasubstituted imidazoles.
    Jiang Z; Lu P; Wang Y
    Org Lett; 2012 Dec; 14(24):6266-9. PubMed ID: 23193963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of pyrroles from terminal alkynes, N-sulfonyl azides, and alkenyl alkyl ethers through 1-sulfonyl-1,2,3-triazoles.
    Kim CE; Park S; Eom D; Seo B; Lee PH
    Org Lett; 2014 Apr; 16(7):1900-3. PubMed ID: 24660875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regiocontrolled synthesis of polysubstituted pyrroles starting from terminal alkynes, sulfonyl azides, and allenes.
    Miura T; Hiraga K; Biyajima T; Nakamuro T; Murakami M
    Org Lett; 2013 Jul; 15(13):3298-301. PubMed ID: 23777199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium-catalyzed cycloaddition of alkynes and organic azides.
    Zhang L; Chen X; Xue P; Sun HH; Williams ID; Sharpless KB; Fokin VV; Jia G
    J Am Chem Soc; 2005 Nov; 127(46):15998-9. PubMed ID: 16287266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-cascade catalysis: synthesis of 3-functionalized indoles.
    Wang J; Wang J; Zhu Y; Lu P; Wang Y
    Chem Commun (Camb); 2011 Mar; 47(11):3275-7. PubMed ID: 21286610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-catalyzed multicomponent reaction: facile access to functionalized 5-arylidene-2-imino-3-pyrrolines.
    Cui SL; Wang J; Wang YG
    Org Lett; 2007 Nov; 9(24):5023-5. PubMed ID: 17979278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous copper catalyst for the cycloaddition of azides and alkynes without additives under ambient conditions.
    Park IS; Kwon MS; Kim Y; Lee JS; Park J
    Org Lett; 2008 Feb; 10(3):497-500. PubMed ID: 18181635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A supported copper hydroxide as an efficient, ligand-free, and heterogeneous precatalyst for 1,3-dipolar cycloadditions of organic azides to terminal alkynes.
    Katayama T; Kamata K; Yamaguchi K; Mizuno N
    ChemSusChem; 2009; 2(1):59-62. PubMed ID: 19132695
    [No Abstract]   [Full Text] [Related]  

  • 19. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides.
    Hein JE; Fokin VV
    Chem Soc Rev; 2010 Apr; 39(4):1302-15. PubMed ID: 20309487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [3 + 2] Cycloaddition of acetylenes with azides to give 1,4-disubstituted 1,2,3-triazoles in a modular flow reactor.
    Smith CD; Baxendale IR; Lanners S; Hayward JJ; Smith SC; Ley SV
    Org Biomol Chem; 2007 May; 5(10):1559-61. PubMed ID: 17571184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.